

Benutzerhandbuch für Geräteregler

Für Wasserkühlmaschinen und Wärmepumpen mit IPro-Regler

Juni 2020

PROD-SVU001C-DE

Inhaltsverzeichnis

ALL	GEMEINE INFORMATIONEN	
1.	MODERNSTE STEUERUNG	
2.	ARCHITEKTUR DER REGLERHARDWARE	5
3.	GROßE BEDIENERSCHNITTSTELLE	
4.	LED-BEDIENERSCHNITTSTELLE	
5.	AKTIVIERUNG DES GERÄTS	
6.	Temperaturregelung	53
7.	WASSERPUMPENSTEUERUNG	
8.	MANAGEMENT DES ALARMS FÜR NIEDRIGEN WASSERDURCHFLUSS	64
9.	FROSTSCHUTZMANAGEMENT	
10.	MANAGEMENT VON VERFLÜSSIGERVENTILATOREN	
11.	SICHERES ENTLASTEN	
12.	ABTAUSTEUERUNG	
13.	ENERGIESPAREN UND AUTO EIN/AUS	
14.	DYNAMISCHER SOLLWERT	74
15.	PROTOKOLLDATEIENVERWALTUNG	
16.	Fernbedienung	

Allgemeine Hinweise

Die Informationen in diesem Handbuch gelten für Wasserkühlmaschinen und Wärmepumpen mit einem erweiterten Regler mit Software- und BIOS-Versionen ab:

BIOS-Release: 2017011600

Anwendungs-Release: 2.0ldronico_a

Diese Informationen werden im Abschnitt Home (Start) der Website des Reglers angezeigt.

1. Erweiterte Regelung

Die Regellogik von Wasserkühlmaschinen und Wärmepumpen ermöglicht die Einstellung auf die Heiz- und Kühllasten der Anlage gemäß dem gewählten Betriebsmodus durch automatische Leistungsregelung.

2. Architektur der Reglerhardware

IPG315D

Stromversorgung: 24V AC/DC
Digitale Eingänge: 20 optoisoliert bei 24 V AC Spannung am Kontakt
Analogeingänge 10 konfigurierbar: 0÷5 V, 4÷20 mA, NTC, PTC, Digitaleingang
Optoisolierte Analogausgänge
2 konfigurierbar: 0-10 V, externer Relaisantrieb, PWM-Signal
4 konfigurierbar: 0–10-V-Signal, externer Relaisantrieb
Relaisausgänge: 10 x 5(2) A @ 250V SPST + 5 SSR-Typ
Externes Terminal: Ausgang 1 für den Anschluss von bis zu zwei externen Terminals (100M)

RTC

Serielle Ausgänge

1 USB

- 1 Ethernet mit Bacnet TCP/IP-Kommunikationsprotokoll
- 1 Anschluss für /GSM-Modem /XWEB-Modem
- 1 RS485-Master mit ModBUS-Kommunikationsprotokoll
- 1 RS485-Slave mit ModBUS- oder BACnet MSTP-Kommunikationsprotokoll
- 1 CANbus zum Anschluss von E/A-Erweiterungsmodulen

IPG108D / IPG108E:
Stromversorgung: 24 V AC/DC
Digitale Eingänge: 11 optoisoliert bei 24 V AC Spannung am Kontakt
Analogeingänge 6 konfigurierbar: 0÷5 V, 4÷20 mA, NTC, PTC, Digitaleingang
Analogausgänge optoisoliert: 4 konfigurierbar: 0÷10-V-Signal, externer Relaisantrieb
Relaisausgänge: 8 x 5(2) A @ 250 V SPST
Externes Terminal: Ausgang 1 für den Anschluss von bis zu zwei externen Terminals (100M)

RTC

INTEGRIERTES LED-DISPLAY (IPG108E)

Serielle Ausgänge

1 USB; BACnet IP mit USB-/Ethernet-Adapter

1 RS485-Master mit Modbus-Kommunikationsprotokoll, wenn der Controller als MASTER konfiguriert ist, oder 1 LAN zur Anbindung des E/A-Erweiterungsmoduls

1 RS485-Slave mit Modbus- oder BACnet MSTP-Kommunikationsprotokoll, wenn der Controller als SLAVE konfiguriert ist

IPX106D:

Stromversorgung: 24 V AC/DC

Digitale Eingänge: 3 optoisoliert

Analogeingänge 7 konfigurierbar: 0+5 V, 4+20 mA, NTC, PTC, Digitaleingang

Analogausgänge optoisoliert: 3 konfigurierbar: 0÷10-V-Signal, externer Relaisantrieb

Relaisausgänge: 6 x 5(2) A @ 250 V SPST

Serielle Ausgänge

1 CANbus für Anschluss an IPG315D

1 LAN für Anschluss an IPG108D oder IPG108E

3. Große Bedienerschnittstelle

Große Wasserkühlmaschinen und Wärmepumpen verfügen über ein grafisches LCD-Bedienfeld, über das der Status und die Einstellungen des Gerätes überwacht und angepasst werden können. Bei kleineren Geräten erfolgt dies über eine "**externe Tastatur**".

elisteate	19:00 (8 / 10 / 10	
Unit ON: heating External air temperature San, water temperature Solar panel temperature Condenser inlet temperature PROSES ST	8.8 °C 32.8 °C 21.0 °C 36.8 °C ALARM () \$1		

3.1. Hauptbildschirm

Auf dem Hauptbildschirm finden Sie Informationen zum Gerätstatus, dem aktuellen Datum sowie zu den Wasser- oder Umgebungstemperaturen auf Verbraucher-und Quellseite:

- Kaltwasserrücklauftemperatur
- Kaltwasseraustrittstemperatur
- Warmwasserrücklauftemperatur
- Warmwasseraustrittstemperatur

Symbole auf dem Hauptbildschirm zeigen zudem allgemeine Informationen zu den Hauptkomponenten oder dem Status von Sonderfunktionen an:

- . Q
- Mindestens einer der Verdichter läuft.
- Die Verdampferpumpe (E) und/oder die Rückgewinnungspumpe (R) und/oder die Quellenpumpe (C) (bei wassergekühlten Geräten) laufen.

- Die Verflüssigerventilatoren laufen (bei luftgekühlten Geräten).
- Blinkt, wenn mindestens ein Alarm aktiv ist.

- Die Geräteleistung wird zur Sicherheit gesenkt.
- Der Abtauzyklus ist aktiv (blinkt während des Countdowns).
- Die Frostschutz-/Zusatzheizungen laufen.
 - Eir den aktuellen Tag ist automatisches Abschalten und/oder Energiesparen aktiviert.
- Das Gerät läuft im Energiesparmodus oder der dynamische Sollwert ist aktiv.

3.2. Menüstruktur des Bedienfelds

Die Informationen auf dem Bedienfeld sind in mehrere Menüs und Untermenüs gegliedert. Die meistgesuchten Informationen sind vom Hauptbildschirm aus direkt über Kurzwahltasten aufrufbar. Die spezifischsten Informationen zum Status von Komponenten oder Funktionen befinden sich stattdessen in gesonderten Menüs im Menüzweig "**SERVICE**".

3.3. Verknüpfte Bereiche

3.3.1. Bereich Probes (Sonden)

Zum Bereich Probes (Sonden) gelangen Sie durch Druck auf die Taste **PROBES** (Sonden) auf dem Hauptbildschirm. In diesem Bereich werden alle konfigurierten Sensoren auf mehreren Seiten angezeigt. Verwenden Sie zur Navigation die Tasten T1 und T8.

Durch Druck auf die Taste **Cir** "**x**" (Kreisl. "x") lässt sich der untergeordnete Bereich des Kreislaufs Nr. "**x**" aufrufen, in dem alle relevanten Kältemittelvariablen angezeigt werden.

Ē	Circ. measuremen	L1	
	HIGH circuit:	18.2 Bar 🔥	
	LOW circuit:	4.9 Bar	
	Evaporator output temp.:	38.1 °C	
	Combined def.temp.:	0.7 °C	
	< ESC Cir. 2	🔆 ALARM 🕨	
C			
1	1 T2 T3 T4 T	5 T6 T7 T8	

3.3.2. Bereich Set Point (Sollwert)

Im Bereich Set Point (Sollwert) lassen sich Wassersollwerte bearbeiten.

Dieses Menü ist über die Taste SET (Einst.) direkt mit dem Hauptbildschirm verknüpft.

Auf diesem Bildschirm erhalten Sie Statusmeldungen zu den Punkten **ENERGY SAVING** (Energie sparen), **DYNAMIC SET POINT** (Dynamischer Sollwert) und **POWER LIMIT** (Leistungsbegrenzung).

Die Sollwerte für Kühlen und Heizen sind die Parameter ST01 und ST04.

Real Set (Tatsächlicher Sollwert) steht stattdessen für den Sollwert einschließlich des Deltawerts der Energieeinsparung oder des dynamischen Sollwerts und kann nicht geändert werden.

Sollwerte sekundärer Verbraucher wie zur Wärmerückgewinnung oder Warmwasserproduktion in Haushalten werden ebenfalls angezeigt, wenn sie konfiguriert wurden:

SOLLWERTE BEARBEITEN

Wählen Sie den zu bearbeitenden Sollwert über die Tasten **UP** (Aufwärts) und **DOWN** (Abwärts) aus und drücken Sie zum Bearbeiten die Taste **SET** (Einst.). Das Element beginnt zu blinken.

Erhöhen oder Verringern Sie den Wert mit den Tasten **UP** (Aufwärts) und **DOWN** (Abwärts) und bestätigen Sie den neuen Wert durch erneutes Drücken auf **SET** (Einst.).

Der Cursor springt automatisch zum nächsten Element in der Liste. Um es zu ändern, wiederholen Sie die gerade beschriebenen Schritte.

Drücken Sie die Taste ESC (Verlassen), um zurück zum Hauptbildschirm zu gelangen.

3.3.3. Bereich Alarm

Bei einem Alarm erscheint das blinkende Symbol A auf dem Bildschirm, die Symbole ALARM PRE55 blinken abwechselnd über der Alarmtaste und der Summer wird ausgelöst.

Der Summer kann durch Drücken einer beliebigen Taste stummgeschaltet werden. Drücken Sie auf die Taste **Alarm**, um zum aktiven Alarm zu gelangen.

Alarme können drei verschiedene Status haben:

- Active (Aktiv) → Der Alarm ist noch aktiv.
- **Resettable** (Zurücksetzbar) → Der Alarm ist nicht mehr aktiv und kann zurückgesetzt werden.
- Password (Passwort) → Der Alarm ist nicht mehr aktiv, kann jedoch nur mit einem Passwort zurückgesetzt werden.

EINEN ALARM ZURÜCKSETZEN

Wählen Sie den zurückzusetzenden Alarm mit den Tasten **UP** (Aufwärts) und **DOWN** (Abwärts) aus und drücken Sie auf **RESET** (Zurücksetzen).

Muss der gewählte Alarm mit einem Passwort zurückgesetzt werden, erscheint ein neuer Bildschirm, auf dem durch die Tasten "+" und "-" der Wert eingegeben werden kann. Bestätigen Sie die Eingabe mit **ENTER** (Eingabe).

Bei korrekter Passworteingabe wird die nachfolgende Meldung angezeigt. Nach einigen Sekunden schaltet das Gerät automatisch auf den aktuellen Alarmbildschirm zurück.

Sind mehrere zurücksetzbare Alarme aktiv, drücken Sie auf **RST ALL** (Alle zurücksetzen), um alle Alarme auf einmal zurückzusetzen.

Drücken Sie die Taste ESC (Verlassen), um zurück zum Hauptbildschirm zu gelangen.

3.3.4. Bereich Circuits Info (Kreislauf-Info)

Vom Hauptbildschirm aus können Sie über die Taste CIRC (Kreisl.) den Gerätezustand überwachen.

Die Informationen beziehen sich auf Folgendes:

 Circuits compressors status (Verdichterstatus der Kreisläufe): Zeigt die vorhandenen Verdichter aller Kreisläufe, deren Betriebszustand sowie die Anzahl der aktiven Entlastungsschritte, wenn die Verdichter über Teilstromventile verfügen. Steht rechts neben dem Verdichter keine Zahl, läuft er unter Volllast.

Außerdem werden aktive Sicherheitsfunktionen wie Öl-Boost oder Sicherheitsentlasten angezeigt.

• **Condensation-evaporation probes** (Verflüssigungs-/Verdampfungssonden): Auf dem Bildschirm werden die Verflüssigungs- und Verdampfungsdrücke jedes vorhandenen Kreislaufs angezeigt.

p. condenser e	vaporator pro	Des
Hi	gh side Low	side
ircuit 1 18	.3 Bar 4.9	Bar
ircuit 2 17	.8 Bar 4.6	Bar
_ ESC 🕸		

• Status of the evaporator pump (Status der Verdampferpumpe oder -pumpen, wenn eine Zusatzpumpe vorhanden ist.)

• Status of the revovery pump (Status der Rückgewinnungspumpe oder -pumpen, wenn eine Zusatzpumpe vorhanden ist.)

• Status of the condenser/source pump on water-cooled units (Status der Verflüssiger-/Quellenpumpe bei wassergekühlten Geräten, oder -pumpen, wenn eine Zusatzpumpe vorhanden ist.)

• **Condensation fans on air-cooled units** (Verflüssigerventilatoren bei luftgekühlten Geräten, proportionale oder schrittweise Regelung.)

3.4. Menüzweig Service

Der Menüzweig "SERVICE" verfügt über 3 verschiedene Zugriffsstufen.

Für Zugriffsstufe 1 bzw. **USER** (Benutzer) ist kein Passwort erforderlich. Die höheren Zugriffsstufen **LV2** und **LV3** sind hingegen passwortgeschützt.

3.4.1. Parameters Programming (Parameterprogrammierung)

Dieses Menü ermöglicht die Einstellung der Parameterwerte.

Entsprechend der Zugriffsstufe können unterschiedliche Parameter angezeigt und bearbeitet werden.

Parameter werden wie folgt in Gruppen unterteilt:

Aufklebe	Bedeutung
r	
ST	Anzeige von Temperaturregelungsparametern
DP	Anzeige von Variablen zur Darstellung auf dem Hauptbildschirm des Bedienfelds
CF	Anzeige von Konfigurationsparametern
SP	Anzeige von Parametern zur Maschineneinrichtung
Sd	Anzeige von Parametern für den dynamischen Sollwert
ES	Anzeige von Parametern zum Energiesparmodus und zur automatischen An-/Abschaltung
AH	Anzeige von Parametern der Zusatzheizungen
СО	Anzeige von Verdichterparametern und -zykluszeiten

SL	Anzeige von Parametern zu stufenlosen Verdichtern
PA	Anzeige von Parametern zu Verdampfer-/Verflüssigerwasserpumpen
Pd	Anzeige von Parametern zur Abpumpfunktion
Un	Anzeige von Parametern zur Entlastungsfunktion
FA	Anzeige von Ventilatorparametern
Ar	Anzeige von Parametern zu Frostschutzheizungen
dF	Anzeige von Abtauparametern
rC	Anzeige von Wärmerückgewinnungsparametern
FS	Anzeige von Parametern zur Warmwasserproduktion in Haushalten
FC	Anzeige von Parametern zur Freikühlfunktion
USA	Anzeige von Parametern zu Zusatzausgängen
AL	Anzeige von Alarmparametern
Et	Anzeige von Parametern zur Steuerung des elektronischen Expansionsventils
10	Anzeige von Parametern zur Konfiguration von Ein-/Ausgängen
СА	Anzeige von Kalibrationsparametern für Analogeingänge
RA:	Anzeige von Bereichsparametern für Analogeingänge

PARAMETER BEARBEITEN

Wählen Sie den zu bearbeitenden Parameter über die Tasten **UP** (Aufwärts) und **DOWN** (Abwärts) aus und drücken Sie zum Bearbeiten die Taste **SET** (Einst.) Das Element beginnt zu blinken und am unteren Bildschirmrand wird seine Beschreibung angezeigt.

Erhöhen oder Verringern Sie den Wert mit den Tasten **UP** (Aufwärts) und **DOWN** (Abwärts) und bestätigen Sie den neuen Wert durch erneutes Drücken auf **SET** (Einst.).

Image: St:Set-point 5t1 5.0 °C 5t2 -10.0 °C 5t3 5.0 °C	
SIS 50.0 °C SIA 20.0 °C Chiller set	
T1 T2 T3 T4 T5 T6 T7 T8)

Der Cursor springt automatisch zum nächsten Element in der Liste. Um es zu ändern, wiederholen Sie die gerade beschriebenen Schritte.

Drücken Sie mehrmals die Taste ESC (Verlassen), um zurück zum Hauptbildschirm zu gelangen.

Warnung: Die Gruppen **CF**, **IO**, **CA** und **RA** können nur aufgerufen werden, wenn das Gerät ABGESCHALTET ist.

3.4.2. Einstellen der Uhr und Programmieren von Zeitbändern

Über dieses Menü werden Uhrzeit und Datum des Mikroprozessors eingestellt.

Zudem lassen sich die Funktionen **Energy Saving** (Energiesparmodus) und/oder **Automatic on/off** (Auto Ein/Aus) auf Grundlage von Zeitbändern aktivieren/deaktivieren.

Um die drei Zeitbänder zu konfigurieren und die wochenweise Programmierung für **ENERGY SAVING** (Energiesparen) und/oder **AUTO ON/OFF** (Auto Ein/Aus) vorzunehmen, müssen Sie auf den Seiten in diesem Untermenü mit den Tasten T1 und T8 nach oben und unten scrollen.

EINEN WERT BEARBEITEN

Wählen Sie den zu bearbeitenden Wert über die Tasten **UP** (Aufwärts) und **DOWN** (Abwärts) aus und drücken Sie zum Bearbeiten die Taste **SET** (Einst.) Das Element beginnt zu blinken.

Erhöhen oder Verringern Sie den Wert mit den Tasten **UP** (Aufwärts) und **DOWN** (Abwärts) und bestätigen Sie den neuen Wert durch erneutes Drücken auf **SET** (Einst.). Der Cursor springt automatisch zum nächsten Element in der Liste. Um es zu ändern, wiederholen Sie die gerade beschriebenen Schritte.

Drücken Sie mehrmals die Taste **ESC** (Verlassen), um zurück zum Hauptbildschirm zu gelangen.

Warnung: Die automatische An-/Abschaltung hat gegenüber dem ENERGIESPARMODUS Priorität.

3.4.3. Menü Compressors (COEn, Verdichter)

Dieses Untermenü beinhaltet folgende Informationen zu den Kreisläufen:

- Betriebsstunden der einzelnen Verdichter
- Anzahl Starts der einzelnen Verdichter

Die Anzahl der Betriebsstunden und Starts kann zurückgesetzt werden. Dieser Vorgang ist passwortgeschützt.

Mit der Taste **ENB/DIS** (Aktiv./Deaktiv.) können die einzelnen Verdichter zur Wartung aktiviert/deaktiviert werden.

EINEN WERT ZURÜCKSETZEN

Wählen Sie den zu bearbeitenden Wert über die Tasten **UP** (Aufwärts) und **DOWN** (Abwärts) aus und drücken Sie **RESET HOURS** (Stunden zurücksetzen) oder **RESET STARTS** (Starts zurücksetzen).

Geben Sie auf dem daraufhin angezeigten Bildschirm mit den Tasten "+" und "-" das Passwort ein. Bestätigen Sie das Passwort mit **ENTER** (Eingabe).

Bei korrekter Passworteingabe wird die Anzahl an Betriebsstunden oder Starts zurückgesetzt und nach wenigen Sekunden wird automatisch die vorherige Seite angezeigt.

3.4.4. Menü Water Pumps (Wasserpumpen)

Dieses Untermenü beinhaltet folgende Informationen:

• Betriebsstunden der einzelnen Wasserpumpen

Die Anzahl der Betriebsstunden kann zurückgesetzt werden. Dieser Vorgang ist **passwortgeschützt**. Mit der Taste **ENB/DIS** (Aktiv./Deaktiv.) können die einzelnen Pumpen zur Wartung aktiviert/deaktiviert werden.

EINEN WERT ZURÜCKSETZEN

Wählen Sie den zu bearbeitenden Wert über die Tasten **UP** (Aufwärts) und **DOWN** (Abwärts) aus und drücken Sie **RESET HOURS** (Stunden zurücksetzen).

Geben Sie auf dem daraufhin angezeigten Bildschirm mit den Tasten "+" und "-" das Passwort ein. Bestätigen Sie das Passwort mit **ENTER** (Eingabe).

Bei korrekter Passworteingabe wird die Anzahl an Betriebsstunden zurückgesetzt und nach wenigen Sekunden wird automatisch die vorherige Seite angezeigt.

Drücken Sie mehrmals die Taste **ESC** (Verlassen), um zurück zum Hauptbildschirm zu gelangen.

3.4.5. Menü Alarms History (Alarmverlauf)

Alle Alarme werden gespeichert und zusammen mit dem Datum und dem Gerätestatus bei ihrem Auftreten auf diesem Bildschirm angezeigt.

ALARMPROTOKOLL ZURÜCKSETZEN

Um das Alarmprotokoll zurückzusetzen, halten Sie die Taste **RST ALL** (Alle zurücksetzen) 3 Sekunden lang gedrückt.

Geben Sie auf dem daraufhin angezeigten Bildschirm mit den Tasten "+" und "-" das Passwort ein. Bestätigen Sie das Passwort mit **ENTER** (Eingabe).

Bei korrekter Passworteingabe wird die Alarmliste zurückgesetzt und nach wenigen Sekunden wird automatisch die vorherige Seite angezeigt.

Drücken Sie mehrmals die Taste ESC (Verlassen), um zurück zum Hauptbildschirm zu gelangen.

3.4.6. Menü Defrost (dF, Abtauen)

In diesem Menü kann der Status des **Abtau**zyklus für jeden konfigurierten Kältemittelkreislauf überprüft werden.

Folgende Abtaustatus sind möglich:

- Countdown EN: Der Countdown läuft und der Auftauvorgang wird bald beginnen
- Zyklus EN: Abtauvorgang läuft
- Tropfzeit EN: In Tropfzeit
- Warten: Der Countdown ist abgelaufen, aber Abtauen ist nicht erforderlich und der Kreislauf arbeitet normal.
- Bedingung nicht vorhanden: Keine erforderliche Bedingung für Abtauen

Wenn Sie den Kreislauf auswählen, wird folgender Bildschirm angezeigt. Halten Sie während des

Countdowns die Taste 5 Sekunden lang gedrückt, um manuell einen Abtauzyklus einzuleiten.

Circuit 1: Counting	g EN	
Delay defrost start:	00:00:26	
Reversing valve status:	ON	
Combined def. pb temp:	0.7 °C	
Set combined def.start:	3.0 °C	
Set combined def.end:	8.0 °C	
ESC 👫	ALARM	
T1 T2 T3 T4 T	5 T6 T7 T8	

3.4.7. Menü Input/Output (InOu, Eingang/Ausgang)

In diesem Menü können der **physische** Status aller **Eingänge** und der **logische** Status aller definierten **Ausgänge** geprüft werden.

Die E/A-Liste des Mikroprozessors ist in Gruppen unterteilt, eine pro Typ.

3.4.8. Menü Electronic Expansion valve (Elektronisches Expansionsventil)

In diesem Menü kann der Betriebszustand der konfigurierten elektronischen Expansionsventile für jeden definierten Kreislauf überprüft werden. Es werden folgende Ventilinformationen angezeigt:

- Saugseitige Kältemittelgas-Temperatur
- Saugdruck
- Öffnung in %
- Set (Superheating Set, Sollwert Überhitzung)
- S.H. (Measured Superheating, gemessene Überhitzung)

Die Benachrichtigung zum Status der Sicherheitsregelung des Expansionsventils wird als LOP, MOP, LSH oder HSH angezeigt.

Warnung: Dieses Menü ist nur verfügbar, wenn der Expansionsventiltreiber in den Hauptmikroprozessor integriert ist.

3.4.9. Menü TEVI Electronic Expansion valve (Elektronisches TEVI-Expansionsventil)

Im Menü für elektronische Expansionsventile kann auf konfigurierten Geräten der Betriebsstatus der elektronischen TEVI-Expansionsventile zur Dampfeinspritzregelung geprüft werden. Für jedes konfigurierte TEVI werden folgende Informationen angezeigt:

- Öffnung Ventil 1 in %
- Öffnung Ventil 2 in % (falls vorhanden)
- Set (Superheating vapor injection Set, Sollwert der überhitzten Dampfeinspritzung)
- T.Vap.Inj. (Measured Temperature of vapor injection, Messtemperatur der Dampfeinspritzung)
- Sh.Vap.Inj. (Measured Superheating of vapor injection, gemessene Überhitzung der Dampfeinspritzung)
- Set (Superheating Set, Sollwert Überhitzung)
- P.Vap.Inj. (Measured Pressure of vapor injection, Messdruck der Dampfeinspritzung)
- T.Sat.Vap.Inj. (Saturated Temperature of vapor injection, gesättigte Temperatur der Dampfeinspritzung)

Die Benachrichtigung zum Regelmodus der Expansionsventil-TEVI-Regelung wird am oberen Bildschirmrand angezeigt:

- Ctrl Superheating (Regelung Überhitzen):
- Discharge Temp. Strg
- Manuelle Betriebsweise
- Alarm

Warnung: Dieses Menü ist nur verfügbar, wenn der Expansionsventil-TEVI-Treiber in den Hauptmikroprozessor integriert ist.

3.4.10. Menü Recovery (Rückgewinnung)

In diesem Menü können der Status der Funktion "**Recovery**" (Rückgewinnung), teilweise oder vollständig, sowie die Benachrichtigung geprüft werden, ob konfigurierte Kältemittelkreisläufe mit Wärmerückgewinnung arbeiten. Diese Information befindet sich unter dem Status "**Rec. Valves**" (Rückgewinnungsventile).

Dieser Bildschirm zeigt folgende Informationen an:

- Status der Rückgewinnungsfunktion:
 - o Deaktiviert
 - o Disabled from key (Per Taste deaktiviert)
 - o Aktiviert
 - o Aktiv
- Art der Priorität:
 - User side (Verbraucherseitig)
 - o Recovery side (Rückgewinnungsseitig)

Durch Drücken der Taste für 1 Sekunde kann die Funktion über das Bedienfeld aktiviert/deaktiviert werden.

3.4.11. Menü Free-cooling (Freie Kühlung)

In diesem Menü können der Status der Funktion "Free-Cooling" (Freie Kühlung) sowie die Werte der entsprechenden Sonden und Einstellungen geprüft werden.

Dieser Bildschirm zeigt folgende Informationen an:

- Status der freien Kühlung:
 - o Deaktiviert
 - o Disabled from key (Per Taste deaktiviert)
 - o Aktiviert
 - o Aktiv
- Art der Priorität:
 - o Verflüssigungsdruck
 - o "Freie Kühlung"
 - o External ventilation (Externe Entlüftung)

Durch Drücken der Taste für 1 Sekunde kann die Funktion über das Bedienfeld aktiviert/deaktiviert werden.

3.4.12. Menü Discharge Compressors (Auslassverdichter)

Über dieses Menü lassen sich die Auslasstemperaturen der konfigurierten Verdichter überwachen.

Bei Geräten mit **Schraubenverdichtern** lassen sich die Einstellungen zum Eingriffspunkt der **Liquid Injection** (Flüssigkeitseinspritzung) und des **High Discharge Temperature Alarm** (Alarm für hohe Auslasstemperatur) direkt überprüfen.

Außerdem lassen sich der Messwert des Sensors **Compressor Discharge Gas** (Verdichterauslassgas) sowie der Status des Flüssigkeitseinspritzventils und des Ventils für minimale Teillast anzeigen. Wählen Sie hierzu einen Kältemittelkreislauf aus und drücken Sie **ENTER** (Eingabe).

3.4.13. Menü Domestic hot water (Warmwasser für Haushalte)

In diesem Menü können der Status der Funktion "**Domestic hot water**" (Warmwasser für Haushalte) sowie die Werte der entsprechenden Sonden und Einstellungen geprüft werden.

Dieser Bildschirm zeigt folgende Informationen an:

- Status der Funktion "Warmwasser für Haushalte":
 - o Deaktiviert
 - o Disabled from key (Per Taste deaktiviert)
 - o Not Requested (Nicht erforderlich)
 - o Doing defrost (Abtaubetrieb, während Abtauzyklus deaktiviert)
 - o Changing state (Statusänderung, während Aktivierung)
 - o Aktiv

Durch Drücken der Taste Für 1 Sekunde kann die Funktion über das Bedienfeld aktiviert/deaktiviert werden.

3.4.14. Menü Control Panel (Bedienfeld)

Dieses Menü ist in mehrere Bereiche unterteilt:

• Parameters file management (Parameterdateimanagement):

Im Speicher des Mikroprozessors sind 2 Dateiparameterzuordnungen gespeichert. Einmal die **aktuellste gespeicherte Kopie der Parameterzuordnung** mit der Bezeichnung "**actual**" (tatsächlich) und eine weitere mit der Bezeichnung "**default**" (Standard), die die **Werkseinstellungen zum Löschen aller vorkonfigurierten Funktionen** enthält.

In diesem Untermenü können die zuletzt gespeicherte Kopie oder die Standardkopie ("**default**") als Parameterzuordnung geladen und eingestellt werden.

Mit dem 3. Befehl "**Save as default parameters**" (Als Standardparameter speichern) können die Werte in der Standardkopie ("**default**") mit denen der zuletzt gespeicherten Kopie (mit der Bezeichnung "**actual**") **überschrieben** werden.

Warnung: Nur autorisierte Techniker mit einem Passwort für die 3. Zugriffsstufe können auf diese Unterfunktion zugreifen.

• Contrast & backlight (Kontrast und Helligkeit:

In diesem Untermenü können der Kontrast und die Dauer bis zum Ausschalten der Hintergrundbeleuchtung eingestellt werden.

• Log file management (Protokolldateimanagement):

In diesem Untermenü können Kopien von Protokolldateien auf einem externen Massenspeicher wie einem USB-Stick gespeichert werden.

• Update Visograph (Visograph aktualisieren):

In diesem Untermenü kann das Bedienfeld aktualisiert werden. Dieser Vorgang kann nicht bei laufendem Gerätebetrieb durchgeführt werden.

Warnung: Während des Updates nicht die Stromversorgung vom Mikroprozessor trennen oder das Bedienfeld abstecken.

• Language selection (Sprachauswahl):

In diesem Untermenü kann die Sprache eingestellt werden. Verfügbare Sprachen sind: Italienisch, Englisch, Französisch, Spanisch und Deutsch.

Language selection	Language selection
Selected language: English	Selected language: English
A vailable languages: English Italian	Available languages: English Italian Are you sure to update?
ESC ALARM SET	ESC ALARM SET
T1 T2 T3 T4 T5 T6 T7 T8	T1 T2 T3 T4 T5 T6 T7 T8

Warnung: Während des Updates nicht die Stromversorgung vom Mikroprozessor trennen oder das Bedienfeld abstecken.

• System Informations (Systeminformationen):

In diesem Untermenü lassen sich die IP-Adresse und die MODbus[®]-Adresse bearbeiten. Die Änderungen sind ab dem nächsten Reglerneustart wirksam.

System Info	ormations	
Release 0.0	Interface 2.0c.00	
IP address ModBus address	192.168.0 .250 1	
Modifications will be act	ual at next reboot	
ESC -	ALARM SET	
T1 T2 T3 T4	T5 T6 T7 T8	

4. LED-Bedienerschnittstelle

Kleine Wasserkühlmaschinen und Wärmepumpen mit dem erweiterten Regler verfügen über die kleinere LED-Bedienerschnittstelle mit integriertem Bedienfeld, über das Gerätestatus und -einstellungen überwacht werden können.

4.1. Hauptbildschirm

Auf dem Hauptbildschirm angezeigte Informationen beziehen sich auf den "Gerätestatus".

Über die Tasten A oder Iasst sich der Wert der konfigurierten Sonden anzeigen.

Die erste Zeile zeigt den Sondenwert und die zweite den Sondennamen an.

Bei einem Alarm blinkt der zugehörige Code in der zweiten Zeile.

Verfügbare Sonden:

Anzeigename	Beschreibung Analogeingang
Eln	NTC-Temperatursonde gemeinsamer Verdampfereingang
Out1	NTC-Temperatursonde Ausgang Verdampfer 1
Out2	NTC-Temperatursonde Ausgang Verdampfer 2
EOut	NTC-Temperatursonde gemeinsamer Verdampferauslass

Cln	NTC-Temperatursonde gemeinsamer Verflüssiger-Warmwassereingang
Cln1	NTC-Temperatursonde Kreislauf 1 Verflüssiger-Warmwassereingang
Cln2	NTC-Temperatursonde Kreislauf 2 Verflüssiger-Warmwassereingang
COu1	NTC-Temperatursonde Kreislauf 1 Verflüssiger-Warmwasserauslass
COu2	NTC-Temperatursonde Kreislauf 2 Verflüssiger-Warmwasserauslass
COut	NTC-Temperatursonde gemeinsamer Verflüssiger-Warmwasserauslass
FCIn	NTC-Temperatursonde Systemwassereingang (freie Kühlung)
Et	Außenlufttemperatur
SAn1	NTC-Temperatursonde Temperaturregelung Haushaltswasser (Nr. 1)
SAn2	NTC-Temperatursonde Temperatursicherung Haushaltswasser (Nr. 2)
ROut	NTC-Temperatursonde Wärmerückgewinnungsauslass
RIn	NTC-Temperatursonde Wärmerückgewinnungseingang
dSet	Sonde dynamischer Sollwert 4÷20 mA
CdP1	Verflüssigungssonde Kreislauf 1 (Druck 4÷20 mA/ratiometrisch 0÷ 5 V)
CdP2	Verflüssigungssonde Kreislauf 2 (Druck 4÷20 mA/ratiometrisch 0÷ 5 V)
LP1	Verdampfungssonde Kreislauf 1 (Druck 4÷20 mA/ratiometrisch 0÷ 5 V)
LP2	Verdampfungssonde Kreislauf 2 (Druck 4÷20 mA/ratiometrisch 0÷ 5 V)
uSt1	NTC-Temperatursonde Zusatzausgang 1
uSt2	NTC-Temperatursonde Zusatzausgang 2
uSP1	Drucksonde Zusatzausgang Kreislauf 1 (Druck 4÷20 mA/ratiometrisch 0÷ 5 V)
uSP2	Drucksonde Zusatzausgang Kreislauf 2 (Druck 4÷20 mA/ratiometrisch 0÷ 5 V)

Bedeutung der einzelnen LEDs:

- EDie Maßeinheit der angezeigten Sonde/des Parameters ist °C.
- Image: Die Maßeinheit der angezeigten Sonde/des Parameters ist °F.
- RTC wird aktuell angezeigt.
- **bar** Die Maßeinheit der angezeigten Sonde/des Parameters ist bar.
- PSI Die Maßeinheit der angezeigten Sonde/des Parameters ist PSI.
- Image: Image: Market M Market Ma Market M Market Mar

- Der Abtauzyklus ist aktiv (blinkt während des Countdowns).
- Die Verflüssigerventilatoren sind in Betrieb.
- Die Wasserpumpen-/Zuluftventilatoren sind in Betrieb.
- Die Frostschutz-/Zusatzheizungen sind in Betrieb.
- Die Zusatzausgänge sind aktiv.
- Blinkt, wenn ein Alarm aktiv ist.
- Cirl Die angezeigte Sonde gehört zu Kreislauf 1.
- Die angezeigte Sonde gehört zu Kreislauf 2.
- Blinkt, wenn die Alarme AEFL, ACFL, AHFL oder APFL aktiv sind.
- 🗱 Wärmepumpenmodus aktiv.
- Kühlmodus aktiv.
- Vset Das Gerät läuft im Energiesparmodus oder der dynamische Sollwert ist aktiv.
- Der Menübildschirm wird angezeigt.

4.2. Menüstruktur des Bedienfelds

Die Informationen auf dem Bedienfeld sind in mehrere Menüs und Untermenüs gegliedert. Die meistgesuchten Informationen sind vom Hauptbildschirm aus direkt über Kurzwahltasten aufrufbar. Die spezifischsten Informationen zum Status von Komponenten oder Funktionen befinden sich stattdessen in gesonderten Menüs im Menüzweig "**SERVICE**".

TASTENFUNKTIONEN

- Aktiviert/Deaktiviert den Wärmepumpenmodus.
- Ruft den Hauptmenübildschirm auf. 3 Sekunden gedrückt halten, um Uhrzeit einzustellen.
- Wechsel der angezeigten Sonde
- Wechsel der angezeigten Sonde
- **SET** Überprüfen des Sollwerts
- Aktiviert/Deaktiviert den Kühlmodus.
- + SET Gleichzeitig für 3 Sekunden gedrückt halten, um Parameter zu prüfen.

4.3. Bereich Set Point (Sollwert)

Im Bereich Set Point (Sollwert) lassen sich Wassersollwerte bearbeiten.

Dieses Menü ist über die Taste SET (Einst.) direkt mit dem Hauptbildschirm verknüpft.

Die erste Zeile zeigt den Sollwert an, die zweite den Typ:

- SEtC -> Sollwert im Kühlmodus (ST01)
- SEtH -> Sollwert im Wärmepumpenmodus (ST04)
- SEtd -> tatsächlicher Sollwert bei aktivem dynamischen Sollwert
- SEtS -> tatsächlicher Sollwert bei aktivem Energiesparmodus
- SEtr -> tatsächlicher Sollwert bei gleichzeitig aktivem dynamischen Sollwert und Energiesparmodus

Wird das Gerät per Bedienfeld oder Fernbedienung ausgeschaltet, können über die Tasten 🕰 oder

die Sollwerte für Kühl- und Wärmepumpenmodus angezeigt werden. Bei eingeschaltetem Gerät werden nur der Sollwert des entsprechenden Betriebsmodus und der tatsächliche Sollwert angezeigt, wenn der Energiesparmodus oder der dynamische Sollwert aktiv sind.

SOLLWERTE BEARBEITEN

Wählen Sie den zu bearbeitenden Sollwert über die Tasten **UP** (Aufwärts) und **DOWN** (Abwärts) aus und drücken Sie zum Bearbeiten 3 Sekunden lang die Taste **SET** (Einst.) Das Element beginnt zu blinken.

Erhöhen oder Verringern Sie den Wert mit den Tasten **UP** (Aufwärts) und **DOWN** (Abwärts) und bestätigen Sie den neuen Wert durch erneutes Drücken auf **SET** (Einst.).

Drücken Sie auf SET (Einst.), um zum Hauptbildschirm zurückzukehren.

4.4. Menüzweig Service

Der Menüzweig "SERVICE" wird über die Taste MENU (Menü) auf dem Standardbildschirm aufgerufen.

Mit den Tasten UP (Aufwärts) und DOWN (Abwärts) können Sie durch alle verfügbaren Untermenüs blättern und diese mit der Taste SET (Einst.) aufrufen.

Name des	Anzeigebedingung	Beschreibung
Untermenüs		
ALRM	Wird immer angezeigt	Aktive Alarme
ALOG	Wird immer angezeigt	Alarmverlauf
COEn	Wird immer angezeigt	Verdichter Ein/Aus
COSn	Wird immer angezeigt	Anzahl Verdichterstarts
Hour	Wird immer angezeigt	Betriebsstunden Verdichter/Pumpe
PUMPE	Verflüssigergerät ohne Verdampfer	Wasserpumpe Ein/Aus
Verfl.	Luftgekühltes Gerät	Verflüssigerventilator
dF	Gerät im Heizbetrieb	Enteisung
InOu	Wird immer angezeigt	I/O status (E/A-Status)
Et	Treiber für elektronisches	Elektronische Expansionsventile
	Auslassventil integriert	
tEVI	Treiber für TEVI-	TEVI-Dampfeinspritzsteuerung
	Dampfeinspritzung vorhanden	
ConF	Wird immer angezeigt	Konfigurationsdateimanagement
USB	Wird immer angezeigt	USB-Management
InFO	Wird immer angezeigt	Systeminformationen

Über die Taste Menu (Menü) verlassen Sie das Untermenü.
4.4.1. Parameters Programming (Parameterprogrammierung)

Halten Sie auf dem Standardbildschirm die Tasten **Setur** gleichzeitig für 3 Sekunden gedrückt, um den Bildschirm zur Parameterprogrammierung aufzurufen.

Auf diesem Bildschirm kann die Zugriffsstufe ausgewählt werden.

Es gibt 3 Zugriffsstufen. Die erste für Endbenutzer ist nicht passwortgeschützt.

Aufkleber	Bedeutung
ST	Anzeige von Temperaturregelungsparametern
DP	Anzeige von Variablen zur Darstellung auf dem Hauptbildschirm des Bedienfelds
CF	Anzeige von Konfigurationsparametern
SP	Anzeige von Parametern zur Maschineneinrichtung
Sd	Anzeige von Parametern für den dynamischen Sollwert
ES	Anzeige von Parametern zum Energiesparmodus und zur automatischen An-/Abschaltung
AH	Anzeige von Parametern der Zusatzheizungen
СО	Anzeige von Verdichterparametern und -zykluszeiten
SL	Anzeige von Parametern zu stufenlosen Verdichtern
ΡΑ	Anzeige von Parametern zu Verdampfer-/Verflüssigerwasserpumpen
Pd	Anzeige von Parametern zur Abpumpfunktion
Un	Anzeige von Parametern zur Entlastungsfunktion
FA	Anzeige von Ventilatorparametern
Ar	Anzeige von Parametern zu Frostschutzheizungen
dF	Anzeige von Abtauparametern
rC	Anzeige von Wärmerückgewinnungsparametern
FS	Anzeige von Parametern zur Warmwasserproduktion in Haushalten
FC	Anzeige von Parametern zur Freikühlfunktion
USA	Anzeige von Parametern zu Zusatzausgängen
AL	Anzeige von Alarmparametern
Et	Anzeige von Parametern zur Steuerung von elektronischen Expansionsventilen und TEVI

Ю	Anzeige von Parametern zur Konfiguration von Ein-/Ausgängen
CA	Anzeige von Kalibrationsparametern für Analogeingänge
RA:	Anzeige von Bereichsparametern für Analogeingänge

DAS PASSWORT EINGEBEN

Drücken Sie SET (Einst.), um die Passworteingabe zu starten.

Das Element "**0**" beginnt zu blinken. Geben Sie den Wert mit den Tasten **UP** (Aufwärts) und **DOWN** (Abwärts) ein und bestätigen Sie den neuen Wert durch erneutes Drücken auf **SET** (Einst.)

Über die Tasten 🗱 oder 🗱 lässt sich der Wert schnell um 100 pro Druck erhöhen/senken.

Bei falscher Passworteingabe wird der Wert auf "**0**" zurückgesetzt, andernfalls werden die Parametergruppen aufgerufen.

Drücken Sie auf **MENU** (Menü), um zum Hauptbildschirm zurückzukehren.

PARAMETER BEARBEITEN

Wählen Sie die gewünschte Gruppe über coder aus und bestätigen Sie die Auswahl mit **SET** (Einst.).

In dieser Gruppe wird der Name des Parameters in der zweiten Zeile und sein Wert in der ersten Zeile angezeigt.

Wählen Sie die gewünschte Gruppe mit der Taste oder Value aus und halten Sie zum Bearbeiten SET (Einst.) 3 Sekunden lang gedrückt.

Das Element beginnt zu blinken. Geben Sie den Wert mit den Tasten **UP** (Aufwärts) und **DOWN** (Abwärts) ein und bestätigen Sie den neuen Wert durch erneutes Drücken auf **SET** (Einst.)

Die Parametergruppe IO ist in 4 Untergruppen unterteilt: Pb, DI, rL und AO.

Abhängig von der Zugriffsstufe lassen sich einige angezeigte Parameter evtl. nicht bearbeiten.

Kann der Parameter nicht bearbeitet werden, leuchtet die LED "." in der zweiten Zeile auf (siehe folgende Abbildung):

Drücken Sie auf **MENU** (Menü), um zum Hauptbildschirm zurückzukehren.

4.4.2. Bereich Alarm

Bei einem Alarm blinkt auf **M**. Im Untermenü **ALRM** des Menüzweigs "**SERVICE**" kann der spezifische aktive Code abgelesen und der Alarm, falls möglich, zurückgesetzt werden.

In diesem Untermenü wird in der zweiten Zeile der Alarmcode und in der ersten der Status angezeigt:

- nein: aktiv, aber nicht zurücksetzbar
- rSt: rücksetzbar
- **PASS:** mit Passwort zurücksetzbar

Ist der Alarm nicht mehr aktiv, drücken Sie zum Zurücksetzen die Taste **SET** (Einst.). Gegebenenfalls werden Sie zur Passworteingabe aufgefordert.

DAS PASSWORT EINGEBEN

Halten Sie SET (Einst.) 3 Sekunden lang gedrückt, um die Passworteingabe zu starten.

Das Element "**0**" beginnt zu blinken. Geben Sie den Wert mit den Tasten **UP** (Aufwärts) und **DOWN** (Abwärts) ein und bestätigen Sie den neuen Wert durch erneutes Drücken auf **SET** (Einst.)

Über die Tasten 🕸 oder 🇱 lässt sich der Wert schnell um 100 pro Druck erhöhen/senken.

Bei falscher Passworteingabe wird der Wert auf "**0**" zurückgesetzt, andernfalls werden sonstige aktive Alarme aufgerufen.

Drücken Sie auf MENU (Menü), um zum Hauptbildschirm zurückzukehren.

TABELLE ZU ALARMCODES

Alarmcode	Alarmbeschreibung
AP1	Sonde PB1
AP2	Sonde PB2
AP3	Sonde PB3
AP4	Sonde PB4
AP5	Sonde PB5
AP6	Sonde PB6
AP11	Expansionsventil 1, Sonde 1
AP12	Expansionsventil 1, Sonde 2
AP13	Expansionsventil 1, Sonde 3
AP14	Expansionsventil 1, Sonde 4
AP15	Expansionsventil 1, Sonde 5
AP16	Expansionsventil 1, Sonde 6
AP17	Expansionsventil 1, Sonde 7
AP39	XEV20D 1, Sonde 1
AP40	XEV20D 1, Sonde 2
AP41	XEV20D 1, Sonde 3
AP42	XEV20D 1, Sonde 4
AP43	XEV20D 2, Sonde 1
AP44	XEV20D 2, Sonde 2
AP45	XEV20D 2, Sonde 3
AP46	XEV20D 2, Sonde 4
AP55	TEVI 1, Sonde 1
AP56	TEVI 1, Sonde 2
AP57	IEVI1, Sonde 3
AP58	IEVI1, Sonde 4
AEFL	Verdampter-Stromungswachter-Alarm
	Verifussiger-Stromungswachter-Alarm
ALSF	
ALET	
AtE2	
AtC1	Uberlastung Wasserpumpe Verflüssiger 1
AtC2	Uberlastung Wasserpumpe Zusatzverflüssiger 2
AEP1	Wartung Wasserpumpe Verdampfer 1
AEP2	Wartung Wasserpumpe Zusatzverdampfer 2
ACP1	Wartung Wasserpumpe Verflüssiger 1
ACP2	Wartung Wasserpumpe Zusatzverflüssiger 2
AHFL	Strömungswächteralarm Warmwasserpumpe für Haushalte
ARFL	Rückgewinnungs-Strömungswächter-Alarm
AEht	Alarm für hohe Verdampfer-Wassereinlasstemperatur
AET1	XEV20D 1 nicht verbunden
AET2	XEV20D 2 nicht verbunden
AEJ1	TEVI 1 nicht verbunden
AEM1	IPROEX60D 1 nicht verbunden
AFFC	Frostschutzalarm bei freier Kühlung
AtR1	Uberlastung Wasserpumpe Rückgewinnung 1
AtR2	Uberlastung Wasserpumpe Zusatzrückgewinnung 2
AfnA	Funktion nicht verfügbar
ASPN	Phasentoige-Alarm
ALC1	Generischer Alarm 1
	Varung wasserpumpe Ruckgewinnung 1
	Valung vvasserpumpe Ruckgewinnung Z
	Noningurationsalarm Nr. "X
AUTIN	

Alarmcode	Alarmbeschreibung
b(n)HP	Kreislauf-Hochdruckschalter (n)
b(n)LP	Kreislauf-Niederdruckschalter (n)
b(n)AC	Frostschutz im Kühlkreislauf (n)
b(n)AH	Frostschutz im Heizkreislauf (n)
b(n)A	Frostschutzalarm Quelle im Kreislauf (n)
b(n)hP	Hochdruckmesswertwandler Verflüssiger Kreislauf (n)
b(n)IP	Niedriger Verdampferdruck Kreislauf (n)
b(n)tF	Überlastungsalarm Kreislauflüfter (n)
b(n)dF	Kreislaufabtauen Alarmsignal (n)
b(n)Cu	Entlastungssignal aufgrund von hoher/hohem Verflüssigungstemp./- druck in Kreislauf (n).
b(n)Eu	Entlastungssignal aufgrund von niedriger Verdampfungstemp. in Kreislauf (n)
b(n)rC	Deaktivierungssignal Wärmerückgewinnung Kreislauf (n)
b(n)PH	Abpumpen des Kreislaufs angehalten (n)
b(n)PL	Abpumpen des Kreislaufs gestartet (n)

Alarmcode	Alarmbeschreibung
C(n)HP	Hochdruckschalter Verdichter (n)
C(n)oP	Öldruckschalter/-schwimmer Verdichter (n)
C(n)tr	Verdichterüberlastung (n)
C(n)dt	Hohe Verdichterauslasstemperatur
C(n)Mn	Verdichterwartung (n)

4.4.3. Bereich Alarm History (Alarmverlauf)

Alle Alarme werden im Untermenü "ALOG" (Alarmprotokoll) zusammen mit dem Datum und dem Gerätestatus bei ihrem Auftreten gespeichert.

Auf dem ersten Bildschirm wird der Alarmcode zusammen mit seiner Ereignisnummer und der Uhrzeit angezeigt. Über **SET** (Einst.) lassen sich nähere Informationen anzeigen, wie der Gerätestatus und das Datum, an dem der Alarm ausgelöst wurde.

ALARMPROTOKOLL LÖSCHEN

Um das Alarmprotokoll zu löschen, scrollen Sie mit coder weiter, bis Sie "**PASS**" in der ersten und "**Arst**" in der zweiten Zeile sehen.

Halten Sie SET (Einst.) 3 Sekunden lang gedrückt, um die Bearbeitung zu starten.

Das Element "**0**" beginnt zu blinken. Geben Sie den Wert mit den Tasten **UP** (Aufwärts) und **DOWN** (Abwärts) ein und bestätigen Sie den neuen Wert durch erneutes Drücken auf **SET** (Einst.)

Über die Tasten 🗱 oder 🗱 lässt sich der Wert schnell um 100 pro Druck erhöhen/senken.

Bei falscher Passworteingabe wird der Wert auf "**0**" zurückgesetzt, andernfalls wird das Alarmprotokoll gelöscht.

Drücken Sie auf MENU (Menü), um zum Hauptbildschirm zurückzukehren.

4.4.4. Menü Compressors (COEn, Verdichter)

Im Untermenü "**COEn**" können Verdichter aktiviert und zur Wartung deaktiviert werden. Informationen zu Betriebsstunden und der Anzahl an Starts erhalten Sie in zwei separaten Untermenüs.

In der zweiten Zeile wird der Verdichterindex und in der ersten der aktuelle Status gemeldet.

Drücken Sie auf oder , um durch alle konfigurierten Verdichter zu blättern und halten Sie **SET** (Einst.) für 3 Sekunden gedrückt, um den gewählten Verdichter ein-/auszuschalten.

Drücken Sie auf MENU (Menü), um zum Hauptbildschirm zurückzukehren.

4.4.5. Menü Compressor Starts Number (COSn, Anzahl Verdichterstarts)

Im Untermenü "COSn" lässt sich die Anzahl der Starts konfigurierter Verdichter einsehen und zurücksetzen.

In der zweiten Zeile wird der Verdichterindex und in der ersten die Anzahl an Starts gemeldet. Der tatsächliche Wert entspricht dem 10-fachen des angezeigten.

Drücken Sie auf oder M, um durch alle konfigurierten Verdichter zu blättern und halten Sie **SET** (Einst.) für 3 Sekunden gedrückt, um die Anzahl der Starts für den gewählten Verdichter zurückzusetzen (Passwort erforderlich).

4.4.6. Menü Water Pump (PUMP, Wasserpumpe)

Im Untermenü "**PUMP**" können Wasserpumpen aktiviert und zur Wartung deaktiviert werden. Informationen zu den Betriebsstunden erhalten Sie in einem separaten Untermenü. Bei Geräten mit motorbetriebenem Verflüssiger wird diese Information nicht angezeigt.

In der zweiten Zeile wird der Pumpenindex und in der ersten der aktuelle Status gemeldet.

Drücken Sie auf oder , um durch alle konfigurierten Wasserpumpen zu blättern und halten Sie **SET** (Einst.) für 3 Sekunden gedrückt, um den gewählten Verdichter ein-/auszuschalten.

Drücken Sie auf MENU (Menü), um zum Hauptbildschirm zurückzukehren.

4.4.7. Menü Compressors & Pumps Working Hour (HOUR, Betriebsstunden Verdichter und Pumpen)

Im Untermenü "**HOUR**" können die Betriebsstunden aller Verdichter und Wasserpumpen angezeigt und zurückgesetzt werden.

In der zweiten Zeile wird der Verdichter- oder Pumpenindex und in der ersten die Anzahl der Betriebsstunden gemeldet.

Drücken Sie auf oder , um durch alle konfigurierten Wasserpumpen zu blättern und halten Sie **SET** (Einst.) für 3 Sekunden gedrückt, um sie nach korrekter Passworteingabe zurückzusetzen.

4.4.8. Menü Condensing Fan (COND, Verflüssigerventilator)

Im Untermenü "COND" lässt sich der Betriebsstatus der Verflüssiger-/Verdampferventilatoren anzeigen.

Wird nur bei luftgekühlten Geräten angezeigt.

In der zweiten Zeile wird der Ventilatorkreislaufindex und in der ersten der aktuelle Ausgabewert gemeldet.

- 0-100 bei stufenloser Lüfterregelung
- 0-4 bei stufenbasierter Regelung

Drücken Sie auf MENU (Menü), um zum Hauptbildschirm zurückzukehren.

4.4.9. Menü Defrost (dF, Abtauen)

Im Untermenü "**dF**" lässt sich der Betriebsstatus des Abtauzyklus anzeigen.

Nur bei Wärmepumpen im Heizmodus anzeigbar.

In der ersten Zeile wird der Kreislaufindex und in der zweiten der Countdown bis zum Start des Abtauzyklus angezeigt.

Halten Sie die Taste **SET** (Einst.) 3 Sekunden lang gedrückt, um einen manuellen Abtauzyklus einzuleiten. Drücken Sie auf **MENU** (Menü), um zum Hauptbildschirm zurückzukehren.

4.4.10. Menü Input/Output (InOu, Eingang/Ausgang)

Im Untermenü "InOu" lässt sich der Status der Ein- und Ausgänge des Reglers überwachen.

Die E/A-Liste ist in 4 Gruppen unterteilt:

- Pb: Analogeingang
- di: Digitaleingang
- rL: Digitalausgang
- out: Analogausgang

Blättern Sie mit coder coder durch die Typen und zeigen Sie den gewünschten mit SET (Einst.) an.

Mit den Tasten UP (Aufwärts) DOWN (Abwärts) können Sie durch die Liste blättern.

SONDEN (Pb)

DIGITALEINGANG (di)

RELAIS (rL)

ANALOGEINGANG (out)

4.4.11. Menü Electronic Expansion valve (Et, elektronisches Expansionsventil)

Im Untermenü "Et" lässt sich der Betriebsstatus der Expansionsventile anzeigen.

Dieses Menü ist nur verfügbar, wenn der Expansionsventiltreiber in den Hauptmikroprozessor integriert ist.

In der ersten Zeile wird der Wert und in der zweiten eine Beschreibung angezeigt:

- **Open:** Ventilöffnung in Prozent
- SH: Überhitzung
- Tasp: Saugtemperatur
- Pasp: Saugdruck

Bei 2 konfigurierten Kreisläufen kann über die Taste **SET** (Einst.) zwischen den Expansionsventilen umgeschaltet werden.

Drücken Sie auf **MENU** (Menü), um zum Hauptbildschirm zurückzukehren.

4.4.12. Menü TEVI control (tEVI, TEVI-Steuerung)

Im Untermenü "**tEVI**" lässt sich der Betriebsstatus des/der Expansionsventils/-e zur Steuerung der Dampfeinspritzung anzeigen.

Dieses Menü ist nur verfügbar, wenn der TEVI-Treiber in den Hauptmikroprozessor integriert ist.

In der ersten Zeile wird der Wert und in der zweiten eine Beschreibung angezeigt:

- **Opn1:** Öffnung Ventil 1 in Prozent
- **Opn2:** Öffnung Ventil 2 in Prozent

- SH: Überhitzung bei Dampfeinspritzung
- Plnj: Druck bei Dampfeinspritzung
- TSat: gesättigte Temperatur bei Dampfeinspritzung
- tlnJ: Temperatur bei Dampfeinspritzung
- **tSC1:** Auslasstemperatur Verdichter 1
- tSC2: Auslasstemperatur Verdichter 2

4.4.13. Menü Configuration File Management (ConF, Konfigurationsdateimanagement)

Im Untermenü "ConF" lassen sich Parameter aus Konfigurationsdateien laden.

Im Speicher des Mikroprozessors sind 2 Dateiparameterzuordnungen gespeichert. Einmal die **aktuellste** gespeicherte Kopie der Parameterzuordnung mit der Bezeichnung "actual" (tatsächlich) und eine weitere mit der Bezeichnung "default" (Standard), die die Werkseinstellungen zum Löschen aller vorkonfigurierten Funktionen enthält.

In diesem Untermenü können die zuletzt gespeicherte Kopie oder die Standardkopie ("**default**") als Parameterzuordnung geladen und eingestellt werden.

Mit dem 3. Befehl "**Save as default parameters**" (Als Standardparameter speichern) können die Werte in der Standardkopie ("**default**") mit denen der zuletzt gespeicherten Kopie (mit der Bezeichnung "**actual**") **überschrieben** werden.

Wählen Sie den gewünschten Befehl über coder is aus und drücken Sie zum Bestätigen 3 Sekunden lang auf **SET** (Einst.)

Nach der Bestätigung wird in der zweiten Zeile der Status des Vorgangs angezeigt:

- In Progress: Laden wird ausgeführt.
- done: Laden beendet
- FAIL: Laden fehlgeschlagen

Drücken Sie auf MENU (Menü), um zum Hauptbildschirm zurückzukehren.

4.4.14. Menü Log File Management (USB,

Konfigurationsdateimanagement)

Im Untermenü "**USB**" können Protokolldateien vom Regler auf ein USB-Massenspeichergerät kopiert werden.

Wird kein USB-Gerät erkannt, wird folgende Meldung angezeigt:

Andernfalls wird in der ersten Zeile SEND (Senden) und in der zweiten die zu kopierende Datei angezeigt:

- Unit LoG: nur die Geräteprotokolldatei
- ALArM LoG: nur die Alarmprotokolldatei
- Et LoG: nur die Expansionsventil-Protokolldatei
- ALL: Alle oben genannten Protokolle + die Zugriffsprotokolldatei

Wählen Sie den gewünschten Befehl über coder is aus und drücken Sie zum Bestätigen 3 Sekunden lang auf **SET** (Einst.)

Nach der Bestätigung wird in der zweiten Zeile der Status des Vorgangs angezeigt:

- In Progress (Lädt)
- done (Laden beendet)
- Error (Problem)

Drücken Sie auf **MENU** (Menü), um zum Hauptbildschirm zurückzukehren.

4.4.15. Menü System Information (InFO, Systeminformation)

Im Untermenü "InFO" werden einige Systeminformationen angezeigt.

Verfügbare Informationen:

- APP: Name der Softwareanwendung
- Adr: Modbus-Adresse
- IP: IP-Adresse

Blättern Sie mit oder oder durch die Informationen.

Drücken Sie auf **MENU** (Menü), um zum Hauptbildschirm zurückzukehren.

5. Gerätestart

Bei Inbetriebnahme sieht der Hauptbildschirm der Geräte wie folgt aus:

Evap.IN temp.: 13.9 °C Evap.OUT temp.: 37.0 °C External air temp.: 13.0 °C Aux.out temp.: 17.6 °C	Evap.IN temp.: 13.9 °C Evap.OUT temp.: 37.0 °C
Evap.OUT temp.: 37.0 °C External air temp.: 13.0 °C Aux.out1 temp.: 17.6 °C	Evap.OUT temp.: 37.0 °C
External air temp.: 13.0 °C Aux.out1 temp.: 17.6 °C	
Aux.out1 temp.: 17.6 °C	External air temp.: 13.0 °C
	Aux.out1 temp.: 17.6 °C

Das Gerät kann über das Bedienfeld gestartet werden:

• Drücken Sie in "Unit ON: Cool Mode" (Gerät EIN: Kühlmodus) die Taste mit den Sonnensymbol

Evap.IN temp.: 13.9 °C Evap.OUT temp.: 37.0 °C External air temp.: 13.0 °C Aux.out temp.: 17.6 °C ↓	Onit ON: COOLING	e 09:00 0	1/01/2013
Evap.OUT temp.: 37.0 °C 44 External air temp.: 13.0 °C 42 Aux.out1 temp.: 17.6 °C 44	Evap.IN temp.:	13.9 °C	a
External air temp.: 13.0 °C Aux.out1 temp.: 17.6 °C	Evap.OUT temp.:	37.0 °C	se l
Aux.out1 temp.: 17.6 °C	External air temp.:	13.0 °C	별테
	Aux.out1 temp.:	17.6 °C	-}*

• Drücken Sie in "Unit ON: Heat Mode" (Gerät EIN: Heizmodus) die Taste mit den Schneesymbol

Evap.IN temp.: 13.9 °C 5 Evap.OUT temp.: 37.0 °C 5 External air temp.: 13.0 °C 5	Unit ON: Heat Mod	e 09:00	01/01/2013
Evap.OUT temp.: 37.0 °C External air temp.: 13.0 °C	Evap.IN temp.:	13.9 °C	ង
External air temp.: 13.0 °C	Evap.OUT temp.:	37.0 °C	
1	External air temp.:	13.0 °C	면
Aux.out1 temp.: 17.6 °C -	Aux.out1 temp.:	17.6 °C	-}-

6. Temperaturregelung

Die Geräte verfügen über unterschiedliche Regelungsmodi.

Über die Parameter **ST9** und **ST10** lässt sich definieren, auf welchen Sonden die Temperaturregelung der Maschine basiert (entweder im Kühl- oder Heizmodus).

Durch Ändern des Parameters ST11 kann zwischen folgenden Regelarten ausgewählt werden:

- Proportionale schrittweise Regelung: empfohlen bei Temperaturregelung auf Grundlage des Wasserrücklaufs zum Gerät
- Neutrale Zone: ausdrücklich empfohlen bei Temperaturregelung auf Grundlage der Bereitstellung

Par.	Beschreibung	Min.	Max	U.M.
ST9	Regelsonde für Kaltwassertemperatur	0	7	
ST10	Regelsonde für Warmwassertemperatur	0	3	
ST11	Definiert die Art der Temperaturregelung	0	4	

Sowohl beim Aktivieren als auch beim Deaktivieren eines Verdichters/Teilschritts beachtet der Mikroprozessor die Parameter in folgender Tabelle und schützt den Verdichter so durch eine Wiederanlaufsperre.

Par.	Beschreibung	Min.	Max	U.M.
CO1	Mindestlaufzeit des Verdichters	1	250	10 Sek.
CO2	Mindeststandzeit des Verdichters	0	250	10 Sek.
CO3	Mindestzeitabstand zwischen zwei Verdichterstarts	0	250	10 Sek.
CO4	Startverzögerung zwischen 2 Verdichtern/Schritten	1	250	Sek
CO5	Stoppverzögerung zwischen 2 Verdichtern/Schritten	1	250	Sek

6.1. Proportionale schrittweise Regelung

Das Regelband ist in Intervalle (Schritte) unterteilt. Deren Anzahl hängt von der Gesamtzahl an Geräteverdichtern und ihren möglichen Teilschritten ab. Dies bedeutet, dass für jeden Schritt eine Start- und Stoppgrenze festgelegt wird.

Übersteigt der Messwert der ausgewählten Temperaturregelungssonde diese Grenze, werden einer oder mehrere Verdichter/Teilschritte gestartet/gestoppt.

Kälte-

Folgende Gleichungen dienen der Berechnung der unterschiedlichen Startgrenzen:

Gesamtzahl der Regelschritte = Anzahl der Verdichter + (Anzahl der Verdichter * Anzahl der Teilschritte/Verdichter)

Breite des proportionalen Schritts = proportionaler Regelbereich [**ST7**] / Gesamtzahl der Regelschritte Startgrenze des Schritts = Regelsollwert [**ST1**] + (Breite des proportionalen Schritts * Schrittfolge [1, 2, 3 usw.]).

Par.	Beschreibung	Min.	Max	U.M.
ST1	Sollwert Kühlmaschine	ST2	ST3	°C
ST2	Mindestsollwert Kühlmaschine	-50,0	ST3	°C
ST3	Maximaler Sollwert Kühlmaschine	ST2	110,0	°C
ST7	Eingreifschritte des Regelbands im Kühlmodus	0,1	25,0	°C

Heizbetrieb

Folgende Gleichungen dienen der Berechnung der unterschiedlichen Startgrenzen:

Gesamtzahl der Regelschritte = Anzahl der Verdichter + (Anzahl der Verdichter * Anzahl der Teilschritte/Verdichter)

Breite des proportionalen Schritts = proportionaler Regelbereich [**ST8**] / Gesamtzahl der Regelschritte Startgrenze des Schritts = Regelsollwert [**ST4**] + (Breite des proportionalen Schritts * Schrittfolge [1, 2, 3 usw.])

Par.	Beschreibung	Min.	Мах	U.M.
ST4	Sollwert Wärmepumpe	ST5	ST6	°C
ST5	Mindestsollwert Wärmepumpe	-50,0	ST6	°C
ST6	Maximaler Sollwert Wärmepumpe	ST5	110,0	°C
ST8	Eingreifschritte des Regelbands im Wärmepumpenmodus	0,1	25,0	°C

6.2. Neutralzone

Die Be- und Entlastungs- sowie die konstanten Bereiche werden durch folgende Parameter festgelegt:

Kälte-

Par.	Beschreibung	Min.	Max	U.M.
ST1	Sollwert Kühlmaschine	ST2	ST3	°C
ST2	Mindestsollwert Kühlmaschine	-50,0	ST3	°C
ST3	Maximaler Sollwert Kühlmaschine	ST2	110,0	°C
ST7	Eingreifschritte des Regelbands im Kühlmodus	0,1	25,0	°C
ST29	Startausgleich 1. Schritt mit Neutralzonenregelung	0,0	25,0	°C
ST30	Startverzögerung 1. Schritt mit Neutralzonenregelung	0	250	Sek
ST31	Stoppausgleich letzter Schritt mit Neutralzonenregelung	0,0	25,0	°C
ST32	Stoppverzögerung letzter Schritt mit Neutralzonenregelung	0	250	Sek

Temperaturwerte zwischen einschließlich ST1 und ST1+ST7 führen keine Verdichterstarts/-stopps herbei. Deshalb wird dieses Intervall als Neutralzone bezeichnet.

Temperaturwerte größer oder gleich ST1+ST7+ST29, die für den Zeitraum ST30 oder länger bestehen,

führen zu einer Startanfrage für den ersten Leistungsschritt des Geräts.

Die verbleibenden Schritte werden nacheinander in Sekundenintervallen gemäß CO4 gestartet, wenn die zur Regelung gewählte Sonde Temperaturwerte größer oder gleich ST1+ST7 erkennt.

Die ersten Schritte werden nacheinander in Sekundenintervallen gemäß CO5 gestoppt, wenn Temperaturwerte unter ST1 fallen, bis nur noch ein Schritt aktiv ist. Dieser wird gestoppt, wenn die Temperatur für einen längeren Zeitraum als ST32 unter dem Wert von ST1-ST31 verbleibt.

Es ist eine weitere Sicherheitsgrenze verfügbar (Berechnung gemäß der anderen Parameterwerte). Unterhalb dieser Grenze erfolgt der bedingungslose Stopp aller Leistungsschritte, um übermäßiges Kühlen zu vermeiden.

Heizbetrieb

Par.	Beschreibung	Min.	Max	U.M.
ST4	Sollwert Wärmepumpe	ST5	ST6	°C
ST5	Mindestsollwert Wärmepumpe	-50,0	ST6	°C
ST6	Maximaler Sollwert Wärmepumpe	ST5	110,0	°C
ST8	Eingreifschritte des Regelbands im Wärmepumpenmodus	0,1	25,0	°C
ST29	Startausgleich 1. Schritt mit Neutralzonenregelung	0,0	25,0	°C
ST30	Startverzögerung 1. Schritt mit Neutralzonenregelung	0	250	Sek
ST31	Stoppausgleich letzter Schritt mit Neutralzonenregelung	0,0	25,0	°C
ST32	Stoppverzögerung letzter Schritt mit Neutralzonenregelung	0	250	Sek

Temperaturwerte zwischen einschließlich ST4 und ST4-ST8 führen keine Verdichterstarts/-stopps herbei. Deshalb wird dieses Intervall als Neutralzone bezeichnet.

Temperaturwerte kleiner oder gleich ST4-ST8-ST29, die für den Zeitraum ST30 oder länger bestehen, starten den ersten Leistungsschritt des Systems.

Die verbleibenden Schritte werden nacheinander in Sekundenintervallen entsprechend CO4 gestartet, wenn die zur Regelung gewählte Sonde Temperaturwerte größer oder gleich ST4-ST8 erkennt.

Die ersten Schritte werden nacheinander in Sekundenintervallen gemäß CO5 gestoppt, wenn Temperaturwerte über ST4 steigen, bis nur noch ein Schritt aktiv ist. Dieser wird gestoppt, wenn die Temperatur für einen längeren Zeitraum als ST32 über dem Wert von ST4+ST31 verbleibt.

Es ist eine weitere Sicherheitsgrenze verfügbar (Berechnung entsprechend der anderen Parameterwerte). Oberhalb dieser Grenze erfolgt der bedingungslose Stopp aller Leistungsschritte, um übermäßiges Heizen zu vermeiden.

6.3. Stufenlose Regelung bei Geräten mit Schraubenverdichtern

Die Be- und Entlastungs- sowie die konstanten Bereiche werden durch folgende Parameter festgelegt:

Kälte-

Par.	Beschreibung	Min.	Max	U.M.
ST1	Sollwert Kühlmaschine	ST2	ST3	°C
ST2	Mindestsollwert Kühlmaschine	-50,0	ST3	°C
ST3	Maximaler Sollwert Kühlmaschine	ST2	110,0	°C
ST7	Eingreifschritte des Regelbands im Kühlmodus	0,1	25,0	°C
ST29	Startausgleich 1. Schritt mit Neutralzonenregelung	0,0	25,0	°C
ST30	Startverzögerung 1. Schritt mit Neutralzonenregelung	0	250	Sek
ST31	Stoppausgleich letzter Schritt mit Neutralzonenregelung	0,0	25,0	°C
ST32	Stoppverzögerung letzter Schritt mit Neutralzonenregelung	0	250	Sek
SL9	Neutralzone im Kühlmodus	0,1	25,0	°C

Temperaturwerte zwischen einschließlich ST1 – SL9/2 und ST1 + SL9/2 führen zu keinen Starts/Stopps oder Be-/Entlastungen der Verdichter. Deshalb wird dieses Intervall als Neutralzone bezeichnet.

Temperaturwerte größer oder gleich ST1+ST7/2+ST29, die für den Zeitraum ST30 oder länger bestehen, führen zu einer Startanfrage für den ersten Leistungsschritt des Geräts.

Die verbleibenden Verdichter werden nacheinander anhand der festgelegten Auswahlkriterien in Sekundenintervallen gemäß CO4 gestartet, wenn die zur Regelung gewählte Sonde Temperaturwerte größer oder gleich ST1+ST7/2 erkennt.

Der Be- und Entlastungsbereich für laufende Verdichter wird von Temperaturen zwischen ST1+SL9/2 und ST1+ST7/2 für die Belastung und ST1-SL9/2 und ST1 – ST7/2 für die Entlastung bestimmt.

Die ersten Verdichter werden nacheinander in Sekundenintervallen gemäß CO5 gestoppt, wenn Temperaturwerte unter ST1 – ST7/2 fallen, bis nur noch einer aktiv ist. Dieser wird gestoppt, wenn die Temperatur für einen längeren Zeitraum als ST32 unter dem Wert von ST1 – ST7/2 - ST31 verbleibt.

Verdichter werden erst gestoppt, wenn ihre Leistung den Mindestwert erreicht hat.

Es ist eine weitere Sicherheitsgrenze verfügbar (Berechnung gemäß der anderen Parameterwerte). Unterhalb dieser Grenze erfolgt der bedingungslose Stopp aller Leistungsschritte, um übermäßiges Kühlen zu vermeiden.

Heizbetrieb

Par.	Beschreibung	Min.	Max	U.M.
ST4	Sollwert Wärmepumpe	ST5	ST6	°C
ST5	Mindestsollwert Wärmepumpe	-50,0	ST6	°C
ST6	Maximaler Sollwert Wärmepumpe	ST5	110,0	°C
ST8	Eingreifschritte des Regelbands im Wärmepumpenmodus	0,1	25,0	°C
ST29	Startausgleich 1. Schritt mit Neutralzonenregelung	0,0	25,0	°C
ST30	Startverzögerung 1. Schritt mit Neutralzonenregelung	0	250	Sek
ST31	Stoppausgleich letzter Schritt mit Neutralzonenregelung	0,0	25,0	°C
ST32	Stoppverzögerung letzter Schritt mit Neutralzonenregelung	0	250	Sek
SL10	Neutralzone im Heizmodus	0,1	25,0	°C

Temperaturwerte zwischen einschließlich ST4 – SL10/2 und ST4 + SL10/2 führen zu keinen Starts/Stopps oder Be-/Entlastungen der Verdichter. Deshalb wird dieses Intervall als Neutralzone bezeichnet.

Temperaturwerte kleiner oder gleich ST4 – ST8/2 - ST29, die für den Zeitraum ST30 oder länger bestehen, führen zu einer Startanfrage für den ersten Leistungsschritt des Geräts.

Die verbleibenden Verdichter werden nacheinander gemäß den festgelegten Auswahlkriterien in Sekundenintervallen entsprechend CO4 gestartet, wenn die zur Regelung gewählte Sonde Temperaturwerte kleiner oder gleich ST4 – ST8/2 erkennt.

Der Be- und Entlastungsbereich für laufende Verdichter wird von Temperaturen zwischen ST4 – SL10/2 und ST4 – ST8/2 für die Belastung und ST4 + SL10/2 und ST4 + ST8/2 für die Entlastung bestimmt.

Die ersten Verdichter werden nacheinander in Sekundenintervallen gemäß CO5 gestoppt, wenn Temperaturwerte unter ST4 + ST8/2 fallen, bis nur noch einer aktiv ist. Dieser wird gestoppt, wenn die Temperatur für einen längeren Zeitraum als ST32 über dem Wert von ST4 + ST8/2 + ST31 verbleibt.

Verdichter werden erst gestoppt, wenn ihre Leistung den Mindestwert erreicht hat.

Es ist eine weitere Sicherheitsgrenze verfügbar (Berechnung gemäß der anderen Parameterwerte). Oberhalb dieser Grenze erfolgt der bedingungslose Stopp aller Leistungsschritte, um übermäßiges Kühlen zu vermeiden.

6.4. Teilweise Wärmerückgewinnung

Die Temperaturregelung der teilweisen Wärmerückgewinnung ist nur verfügbar, wenn sie als proportionaler Einzelschritt auf Grundlage der Rücklauftemperatur angefragt wurde.

Par.	Beschreibung	Min.	Max	U.M.
RC13	Sollwert für Wassertemp. bei Wärmerückgewinnung	RC11	RC12	°C
RC14	Regeldifferenz für Wassertemp. bei Wärmerückgewinnung	0,1	25,0	°C
RC11	Mindestsollwert für Wassertemp. bei Wärmerückgewinnung	-50,0	RC12	°C
RC12	Maximaler Sollwert für Wassertemp. bei Wärmerückgewinnung	RC11	110,0	°C

Der Zwischenkühler ist aktiv, wenn die Anfrage AN ist, mindestens ein Verdichter läuft und sich kein Kältemittelkreislauf in einem Abtauzyklus befindet.

Diese Funktion kann über das Bedienfeld aktiviert/deaktiviert werden (siehe Kapitel 3.4.9).

6.5. Gesamtwärmerückgewinnung

Die Temperaturregelung der Gesamtwärmerückgewinnung ist (falls verfügbar) ein proportionaler Schritt auf Grundlage der Rücklauftemperatur.

Die Anzahl der verfügbaren Schritte entspricht der Anzahl an vorhandenen Kältemittelkreisläufen.

Par.	Beschreibung	Min.	Мах	U.M.
RC13	Sollwert für Wassertemp. bei Wärmerückgewinnung	RC11	RC12	°C
RC14	Regeldifferenz für Wassertemp. bei Wärmerückgewinnung	0,1	25,0	°C
RC11	Mindestsollwert für Wassertemp. bei Wärmerückgewinnung	-50,0	RC12	°C
RC12	Maximaler Sollwert für Wassertemp. bei Wärmerückgewinnung	RC11	110,0	°C

In diesem Fall ist die Wärmerückgewinnung aktiv, wenn die Anfrage AN ist und die Nachfrage des Hauptverbrauchers durch mindestens einen Verdichter gedeckt ist.

Diese Funktion "aktiviert" die Anzahl an Kreisläufen für die Wärmerückgewinnung entsprechend der Anfrage, die Anzahl an nötigen Schritten wird jedoch durch die Kaltwasserproduktion bestimmt.

Diese Funktion kann über das Bedienfeld aktiviert/deaktiviert werden (siehe Kapitel 3.4.9).

6.6. Warmwasserregelung für Haushalte durch 3-Wege-Ventil

Die Temperaturregelung für Warmwasser in Haushalten ist ggf. ein proportionaler Schritt auf Grundlage der von einem Sensor im Sanitärwassertank gemessenen Temperatur.

Par.	Beschreibung	Min.	Max	U.M.
FS2	Raumheizung Priorität vs. Haushalte Warmwasser Priorität	0	1	
FS3	Wassersollwert für Haushalte	FS5	FS6	°C
FS4	Differenz für Wassertemperaturregelung in Haushalten	0,1	25,0	°C
FS5	Mindestsollwert für Wassertemperatur in Haushalten	-50,0	FS6	°C
FS6	Maximaler Sollwert für Wassertemperatur in Haushalten	FS5	110,0	°C

Die Anzahl an verfügbaren Schritten hängt von der Gesamtzahl an Geräteverdichtern und ihren möglichen Teilschritten ab.

Werkseitig ist die Priorität für die Warmwasserproduktion in Haushalten eingestellt.

Die Warmwasserproduktion für Haushalte ist aktiv, wenn die Anfrage AN ist und sich keiner der Kältemittelkreisläufe in einem Abtauzyklus befindet.

Diese Funktion kann über das Bedienfeld aktiviert/deaktiviert werden (siehe Kapitel 3.4.12).

7. Wasserpumpensteuerung

Das Management der Pumpengruppen hängt mit dem Wert des Parameters Pump Operation Mode (Pumpenbetriebsmodus) zusammen:

Par.	Beschreibung	Min.	Max	Hinweis
PA1	Pumpenbetriebsmodus Verdampfer	0	2	Kaltwasserseite
PA17	Betriebsmodus Quellenpumpe	0	2	Quellenseite bei wassergekühlten Geräten
PA31	Betriebsmodus Rückgewinnungspumpe	0	2	Warmwasserseite

- 0= Nicht vorhanden
- 1: **Dauerbetrieb** Die Pumpe ist immer gleichzeitig mit dem Gerät aktiv, unabhängig vom Verdichterbetrieb.
- 2: Bedarfsgesteuert Die Pumpe ist nur aktiv, wenn eine Leistungsstufe erforderlich ist.

Der Regler stellt sicher, dass die Zeiten und Verzögerungen zwischen dem An- und Ausschalten der Verdichter und Pumpen eingehalten werden.

Bei einem Frostschutzalarm erzwingt der Mikroprozessor einen Pumpenstart.

Verdampferpumpe

Par.	Beschreibung	Min.	Max	U.M.
PA2	Einschaltverzögerung des ersten Verdichters ab Pumpenstart	0	250	10 Sek.
PA3	Abschaltverzögerung der Verdampferwasserpumpe ab letztem Verdichterstopp	0	250	10 Sek.
PA4	Deaktivierungsverzögerung der Pumpe ab Gerätestopp	0	250	10 Sek.

Verflüssigerpumpe/Quellwasserseite bei wassergekühlten Geräten

Par.	Beschreibung	Min.	Max	U.M.
PA18	Einschaltverzögerung des ersten Verdichters ab Start	0	250	10 Sek.
PA19	Abschaltverzögerung der Verflüssigerpumpe ab letztem Verdichterstopp	0	250	10 Sek.
PA20	Deaktivierungsverzögerung der Pumpe ab Gerätestopp	0	250	10 Sek.

Wärmerückgewinnungspumpe

Par.	Beschreibung	Min.	Max	U.M.
PA32	Einschaltverzögerung des ersten Verdichters ab Pumpenstart	0	250	10 Sek.
PA33	Abschaltverzögerung der Rückgewinnungswasserpumpe ab letztem Verdichterstopp	0	250	10 Sek.
PA34	Deaktivierungsverzögerung der Pumpe ab Gerätestopp	0	250	10 Sek.

7.1. Management von Wasserpumpen mit variabler Drehzahl

Verfügt das Gerät über Wasserpumpen mit variabler Drehzahl, steuert der Regler sie proportional zur bereitgestellten Kapazität.

Verdampferpumpe

Par.	Beschreibung	Min.	Max	U.M.
US21	Mindestwert für 0-10-V-Verda. Analogausgang	0	US22	%
US22	Maximalwert für 0-10-V-Verda. Analogausgang	US21	100	%

Wärmerückgewinnungspumpe

Par.	Beschreibung	Min.	Max	U.M.
US28	Mindestwert für 0-10-V-Rückg. Analogausgang	0	US29	%
US29	Maximalwert für 0-10-V-Rückg. Analogausgang	US28	100	%

Verflüssigerpumpe/Quellwasserseite bei wassergekühlten Geräten

Par.	Beschreibung	Min.	Max	U.M.
US35	Mindestwert für Quellenanalogausgang mit 0–10 V	0	US35	%
US36	Höchstwert für Quellenanalogausgang mit 0–10 V	US36	100	%

Bei wassergekühlten Geräten hält die Quellenpumpe mit variabler Drehzahl die Leistung des Geräts in einem festgelegten Rahmen.

7.2. Wasserpumpenwechsel

Die Wasserpumpenrotation ist nur aktiviert, wenn mindestens 2 Pumpen konfiguriert sind.

Bei einem Überlastungsalarm führt der Regler die Pumpenrotation sofort für die laufende Pumpe durch. Im normalen Betrieb führt der Regler die Rotation entsprechend des ausgewählten Modus durch:

- manual (manuell): Die laufende Pumpe hängt mit der ausgewählten Pumpe zusammen:
 - Pumpe 1 aktiv
 - Pumpe 2 aktiv
- automatic (automatisch): Der Regler führt die Rotation der beiden Pumpen wie folgt durch:
 - Start: bei jedem Wasserpumpenstart aktiviert der Regler eine andere Pumpe.
 - Anzahl erreichter Betriebsstunden: Der Wechsel zwischen beiden Pumpen erfolgt nur, wenn die aktive Pumpe eine vorher festgelegte Anzahl an Gesamtbetriebsstunden erreicht hat.
 - Anzahl erreichter Betriebsstunden und Start: Zusätzlich zum vorherigen Modus wechselt der Regler die Pumpen auch beim Start.

Verdampferpumpe

Par.	Beschreibung	Min.	Max	U.M.
PA5	Pumpenaktivierung und -rotation		4	
PA6	Manuelle Pumpenumkehrung		1	
PA7	Anz. Anz. Betriebsstunden für erzwungene Verdampferpumpenrotation	0	999	10 h
PA8	Dauer für simultanen Pumpenbetrieb nach erzwungener Pumpenrotation	0	250	Sek

Verflüssigerpumpe/Quellwasserseite bei wassergekühlten Geräten

Par.	Beschreibung	Min.	Max	U.M.
PA21	Pumpenaktivierung und -rotation		4	
PA22	Manuelle Pumpenumkehrung		1	
PA23	Anz. Anz. Betriebsstunden für erzwungene Verflüssigerpumpenrotation	0	999	10 h
PA24	Dauer für simultanen Pumpenbetrieb nach erzwungener Pumpenrotation	0	250	Sek

Wärmerückgewinnungspumpe

Par.	Beschreibung	Min.	Max	U.M.
PA35	Pumpenaktivierung und -rotation		4	
PA36	Manuelle Pumpenumkehrung		1	
PA37	Anz. Anz. Betriebsstunden für erzwungene Verdampferpumpenrotation	0	999	10 h
PA38	Dauer für simultanen Pumpenbetrieb nach erzwungener Pumpenrotation	0	250	Sek

8. Management des Alarms für niedrigen Wasserdurchfluss

An den Wärmetauschern des Geräts ist ein Differenzdruckschalter verbaut.

Ein zusätzlicher Paddelströmungswächter (einer pro Verbraucher) muss an Rohrleitungen in der Nähe des Geräts verbaut werden. Sein digitaler Kontakt ist in Serie mit dem auf der Platine zu verdrahten.

Im Regelkreis liegt eine Verzögerung vor, um den Alarm beim Pumpenstart zu umgehen. Dadurch wird vor der Alarmauslösung abgewartet, ob Ventile auf der Hydraulikseite (falls vorhanden) vollständig geöffnet sind. Während des Verdichterbetriebs erfolgt eine weitere, kürzere Umgehungsverzögerung, um Fehlalarme aufgrund von Übergangsbedingungen zu vermeiden.

Alarme aufgrund von niedrigem Wasserdurchfluss sind kritisch. Sie blockieren das Gerät vollständig und ihre automatische Zurücksetzung basiert auf der Öffnungsdauer des digitalen Eingangs nach der Alarmauslösung.

Die Kontrolle für niedrigen Wasserdurchfluss ist während der Pumpenbetriebszeit aktiv.

seranschlüsse
seranschlüsse

Par.	Beschreibung	Min.	Max	U.M.
PA2	Einschaltverzögerung des ersten Verdichters ab Rückgewinnungspumpenstart	0	250	10 Sek.
PA32	Einschaltverzögerung des ersten Verdichters ab Rückgewinnungspumpenstart	0	250	10 Sek.
AL16	Umgehen des Verdampferströmungswächteralarms durch Aktivieren des Verdampferpumpen-/Zuluftventilators	0	250	Sek
AL17	Maximale Dauer des Verdampferströmungswächteralarms vor dem Umschalten auf manuellen Modus und Blockieren der Verdampferwasserpumpe (wenn in Betrieb)	0	250	Sek
AL18	Aktivitätsdauer des Eingangs für den Verdampferströmungswächter/Zuluftventilator bei Überhitzung	0	250	Sek

Warnung: Der Wert des Parameters AL 16 darf den Wert der Parameter PA 2 oder PA 32 nicht übersteigen.

Warnung: Bei der **teilweisen Wärmerückgewinnung** ist keinerlei Regelung für niedrigen Wasserdurchfluss konfiguriert.

Quellwasserseite bei wassergekühlten Geräten

Bei wassergekühlten Geräten funktioniert der Alarm für niedrigen Wasserdurchfluss auf der Quellwasserseite genauso wie der im Vorherigen beschriebene Alarm.

Die Grafik oben behält ihre Gültigkeit, lediglich die Parameter zur Regelung unterscheiden sich.

Par.	Beschreibung	Min.	Max	U.M.
PA18	Einschaltverzögerung des ersten Verdichters ab Quellenpumpenstart	0	250	10 Sek.
AL22	Verzögerung des Verflüssigerströmungswächteralarms ab Start der Verflüssigerwasserpumpe	0	250	Sek
AL23	Maximale Dauer des Verflüssigerströmungswächteralarms vor dem Umschalten auf manuellen Modus und Blockieren der Verflüssigerwasserpumpe (wenn in Betrieb)	0	250	Sek
AL24	Aktivitätsdauer für den Eingang des Verflüssigerströmungswächters	0	250	Sek

Warnung: Der Wert des Parameters AL 22 darf den Wert des Parameters PA 18 nicht übersteigen.

9. Frostschutzmanagement

Der Frostschutzkreislauf basiert auf der Wassertemperatur, die durch einen Sensor am Wärmetauscher oder in der Nähe des Wasserauslasses gemessen wird.

Alarme aufgrund von niedriger Wassertemperatur sind kritisch. Sie blockieren das Gerät vollständig, können nur manuell zurückgesetzt werden und es gibt keine Umgehungsverzögerungen.

Warnung: Die Werkseinstellungen aller Geräte beziehen sich auf die Anwendung ohne Glykol.

Verdampfer

Im Regelkreis auf der Verdampferseite sind 3 unterschiedliche Grenzen mit an den Betriebsmodus angepassten Werten definiert.

Beim ersten Wert (dem höchsten) senkt der Mikroprozessor die Leistung des Geräts auf ein Minimum und ignoriert dabei die Zeiteinstellungen der Temperaturregelung. Diese Aktion wird nur bei aktiver Kaltwasserproduktion ausgeführt.

Beim zweiten Wert aktiviert der Mikroprozessor die Heizung des Wärmetauschers sowie die Wasserpumpe, wenn die Verdampferwasserpumpe nicht läuft.

Beim dritten Wert	(dem niedriasten)	wird der Alarm	ausgelöst und e	das desamte	Gerät gestoppt
Donn antion wort	(denn meangeten)		adogoloot ana v	ado goodinito	ooral gooloppi

Par.	Beschreibung	Min.	Max	U.M.
UN6	Sollwert für Verdichterentlastung basierend auf der niedrigen Verdampferwassertemperatur	-50,0	110,0	°C
UN7	Differenz für Verdichterentlastung basierend auf der niedrigen Verdampferwassertemperatur	0,1	25,0	°C
AR1	Sollwert für Frostschutz-/Zusatzheizungen im Kühlmodus	-50,0	110,0	°C
AR2	Regelband für Frostschutz-/Zusatzheizungen im Kühlmodus	0,1	25,0	°C
AL32	Mindestsollwertgrenze Frostschutz im Kühlmodus	-50,0	AL33	°C
AL33	Maximale Sollwertgrenze Frostschutz im Kühlmodus	AL32	110,0	°C
AL34	Frostschutz-Alarmeinstellung für Kühlmodus	AL32	AL33	°C
AL35	Frostschutz-Alarmdifferenzial im Kühlmodus	0,1	25,0	°C
AR3	Sollwert für Frostschutz-/Zusatzheizungen im Wärmepumpenmodus	-50,0	110,0	°C
AR4	Regelband für Frostschutz-/Zusatzheizungen im Wärmepumpenmodus	0,1	25,0	°C
AL39	Mindestsollwertgrenze Frostschutz im Wärmepumpenmodus	-50,0	AL40	°C
AL40	Maximale Sollwertgrenze Frostschutz im Wärmepumpenmodus	AL39	110,0	°C
AL41	Frostschutz-Alarmeinstellung im Wärmepumpenmodus	AL39	AL40	°C
AL42	Frostschutz-Alarmdifferenzial im Wärmepumpenmodus	0,1	25,0	°C

Wärmerückgewinnung

Im Regelkreis auf der Wärmerückgewinnungs-Wasserseite sind 2 Grenzwerte definiert.

Beim ersten Wert aktiviert der Mikroprozessor die Heizung des Wärmetauschers sowie die Wasserpumpe, wenn die Wärmerückgewinnungspumpe nicht läuft.

Beim zweiten Wert (dem niedrigsten) wird der Alarm ausgelöst und das gesamte Gerät gestoppt.

Par.	Beschreibung	Min.	Max	U.M.
AL72	Mindestsollwertgrenze Frostschutz bei der Rückgewinnung	-50,0	AL73	°C
AL73	Maximale Sollwertgrenze Frostschutz bei der Rückgewinnung	AL72	110,0	°C
AL74	Frostschutz-Alarmeinstellung für Rückgewinnung	AL72	AL73	°C
AL75	Frostschutz-Alarmdifferenzial für Rückgewinnung	0,1	25,0	°C

Warnung: Bei der **teilweisen Wärmerückgewinnung** ist keinerlei Regelung für niedrige Wassertemperatur konfiguriert.

Quellwasserseite bei wassergekühlten Geräten

Im Regelkreis auf der Kaltwasserseite sind 2 Grenzwerte definiert.

Beim ersten Wert aktiviert der Mikroprozessor die Wärmetauscher sowie die Wasserpumpe, wenn die Wärmetauscher und die Pumpe nicht in Betrieb sind.

Beim zweiten Wert (dem niedrigsten) wird der Alarm ausgelöst und das gesamte Gerät gestoppt.

Par.	Beschreibung	Min.	Max	U.M.
AL86	Mindestsollwertgrenze Frostschutz für Verflüssiger im Kühlmodus	-50,0	AL87	°C
AL87	Maximale Sollwertgrenze Frostschutz für Verflüssiger im Kühlmodus	AL86	110,0	°C
AL88	Frostschutz-Alarmeinstellung für Verflüssiger im Kühlmodus	AL86	AL87	°C
AL89	Frostschutz-Alarmdifferenzial für Verflüssiger im Kühlmodus	0,1	25,0	°C
AL90	Mindestsollwertgrenze Frostschutz für Verflüssiger im Wärmepumpenmodus	-50,0	AL91	°C
AL91	Maximale Sollwertgrenze Frostschutz für Verflüssiger im Wärmepumpenmodus	AL90	110,0	°C
AL92	Frostschutz-Alarmeinstellung für Verflüssiger im Wärmepumpenmodus	AL90	AL91	°C
AL93	Frostschutz-Alarmdifferenzial für Verflüssiger im Wärmepumpenmodus	0,1	25,0	°C

10. Management von Verflüssigerventilatoren

Geräte können mit Ventilatorenmanagement ausgestattet werden, um je nach Betriebsmodus den **Verflüssigungs**- oder **Verdampfungs**druck zu regeln.

Entsprechend der gewählten Schallschutzausführung und Optionen sind zwei verschiedene Arten erhältlich.

- Stufenweise Regelung
- Stufenlose Regelung

Stufenweise Verflüssigungsregelung

Par.	Beschreibung	Min.	Мах	U.M.
FA10	Minimale Ventilatorleistung im Kühlmodus/erste Stufe	0,0	50,0	bar
FA11	Maximale Ventilatorleistung im Kühlmodus/zweite Stufe	0,0	50,0	bar
FA12	Proportionale Bandregelung im Kühlmodus/Differenzial bei Schritten von Kreisl. 1	0,1	14,0	bar
FA13	ABSCHALT-Differenzial im Kühlmodus/Differenzial bei Schritten von Kreisl. 2	0,1	14,0	bar
FA25	Dritte Stufe im Kühlmodus	0,0	50,0	bar
FA26	Vierte Stufe im Kühlmodus	0,0	50,0	bar
FA27	Differenzial bei Schritten von Kreisl. 3 im Kühlmodus	0,1	14,0	bar
FA28	Differenzial bei Schritten von Kreisl. 4 im Kühlmodus	0,1	14,0	bar

Stufenweise Verdampfungsregelung

Par.	Beschreibung		Min.	Мах	U.M.
FA19	Maximale Ventilatorleistung im Wärmepumpenmodus/vierte Stufe		0,0	50,0	bar
FA20	Minimale Ventilatorleistung im Wärmepumpenmodus/dritte Stufe		0,0	50,0	bar
FA21	Proportionale Bandregelung im Wärmepumpenmodus/Differenzial Schritten von Kreisl. 1	bei	0,1	14,0	bar
FA22	ABSCHALT-Differenzial im Wärmepumpenmodus/Differenzial Schritten von Kreisl. 2	bei	0,1	14,0	bar
FA29	Zweite Stufe im Wärmepumpenmodus		0,0	50,0	bar
FA30	Erste Stufe im Wärmepumpenmodus		0,0	50,0	bar
FA31	Differenzial bei Schritten von Kreisl. 3 im Wärmepumpenmodus		0,1	14,0	bar
FA32	Differenzial bei Schritten von Kreisl. 4 im Wärmepumpenmodus		0,1	14,0	bar

Warnung: Um **Configuration alarm n°2** (Konfigurationsalarm Nr. 2) zu vermeiden, müssen folgende mathematische Regeln eingehalten werden:

- FA10<FA11<FA25<FA26
- FA19<FA20<FA29<FA30

Stufenlose Verflüssigungsregelung

Par.	Beschreibung	Min.	Мах	U.M.
FA8	Minimale Leistung der Geräteventilatoren	0	FA16	%
FA9	Maximale Leistung der Geräteventilatoren	FA16	100	%
FA10	Minimale Ventilatorleistung im Kühlmodus/erste Stufe	0,0	50,0	bar
FA11	Maximale Ventilatorleistung im Kühlmodus/zweite Stufe	0,0	50,0	bar
FA12	Proportionale Bandregelung im Kühlmodus/Differenzial bei Schritten von Kreisl. 1	0,1	14,0	bar
Ε Δ13	ABSCHALT-Differenzial im Kühlmodus/Differenzial bei Schritten von Kreisl 2	0.1	14 0	har
FA14	ABSCHALT-Übersteuerung im Kühlmodus	0,1	14.0	bar
FA16	Ventilatorleistung im Kühlmodus bei Nachtbetrieb	FA8	FA9	%

Par.	Beschreibung	Min.	Мах	U.M.
FA17	Minimale Ventilatorleistung im Wärmepumpenmodus	0	70	%
FA18	Maximale Ventilatorleistung im Wärmepumpenmodus	70	100	%
FA19	Maximale Ventilatorleistung im Wärmepumpenmodus/vierte Stufe	0,0	50,0	bar
FA20	Minimale Ventilatorleistung im Wärmepumpenmodus/dritte Stufe	0,0	50,0	bar
FA21	Proportionale Bandregelung im Wärmepumpenmodus/Differenzial bei Schritten von Kreisl. 1	0,1	14,0	bar
FA22	ABSCHALT-Differenzial im Wärmepumpenmodus/Differenzial bei Schritten von Kreisl. 2	0,1	14,0	bar
FA23	ABSCHALT-Übersteuerung im Wärmepumpenmodus	0,1	14,0	bar
FA24	Ventilatorleistung im Wärmepumpenmodus bei Nachtbetrieb	30	100	%

Warnung: Um **Configuration alarm n°2** (Konfigurationsalarm Nr. 2) zu vermeiden, müssen folgende mathematische Regeln eingehalten werden:

- FA10+FA12+FA13<FA11
- FA13<FA14
- FA19+FA22+FA21<FA20
- FA22<FA23

11. Sicherheitsentlasten

Der Regler steuert das erzwungene Entlasten von Kältemittelkreisläufen in kritischen Betriebsbedingungen, um selbst unter Schwerlast Unterbrechungen zu vermeiden.

Mögliche Auslöser des Sicherheitsentlastens:

- 1. Hohe Wasserrücklauftemperatur während des Kühlens, um die Stromaufnahme zu senken.
- 2. Niedrige Wasseraustrittstemperatur während des Kühlens, um Frostschutzalarme zu vermeiden (siehe Kapitel 8).
- 3. Hoher Verflüssigungsdruck, um Hochdruckabschaltungen zu vermeiden.
- 4. Niedriger Verdampfungsdruck, um Niederdruckabschaltungen zu vermeiden.

Diese Funktion übersteuert die normale Temperaturregelung und bei ihrer Aktivierung wird der Parameter CO5 nicht berücksichtigt. Der Regler nutzt alle Ressourcen, um die Leistung der Kreisläufe schnellstmöglich auf ein Minimum zu senken.

Par.	Beschreibung	Min.	Мах	U.M.
UN1	Entlastungssollwert für niedrige Verdampfungs- Wasserrücklauftemperatur beim Kühlen	-50,0	110,0	°C
UN2	Entlastungsdifferenzial für niedrige Verdampfungs- Wasserrücklauftemperatur beim Kühlen	0,1	25,0	°C
UN3	Verzögerung für Entlastung bei hoher Verdampfungs- Wasserrücklauftemperatur einfügen	0	250	10 Sek.
UN4	MAX. Dauer der Entlastung aufgrund von hoher Verdampfungs- Wasserrücklauftemperatur beim Kühlen	0	250	min
UN6	Entlastungssollwert für niedrige Verdampfungs- Wasseraustrittstemperatur beim Kühlen	-50,0	110,0	°C
UN7	Entlastungsdifferenzial für niedrige Verdampfungs- Wasseraustrittstemperatur beim Kühlen	0,1	25,0	°C
UN8	Verzögerung für die Entlastung aufgrund von niedriger Verdampfungs- Wasseraustrittstemperatur einfügen	0	250	10 Sek.
UN9	MAX. Dauer der Entlastung aufgrund von hoher Verdampfungs- Wasseraustrittstemperatur beim Kühlen	0	250	min
UN11	Entlastungssollwert für Verflüssigungstemperatur/-druck	0,0	50,0	bar
UN12	Entlastungsdifferenzial für Verflüssigungstemperatur/-druck	0,1	14,0	bar
UN13	Entlastungssollwert für Verdampfungsdruck	-1,0	50,0	bar
UN14	Entlastungsdifferenzial für Verdampfungsdruck	0,1	14,0	bar
UN15	MAX. Dauer der Entlastung aufgrund von Temperatur/Druck	0	250	min

12. Abtaumanagement

Wärmepumpen mit erweiterter Regelung verfügen über einen Regelkreis für Digital Defrost, um die Anzahl an Abtauzyklen zu minimieren und die Effizienz zu optimieren.

Dieser Regelkreis basiert auf dem Unterschied zwischen dem Verdampferschlangensollwert (Unterschied zwischen Verdampfungs- und Umgebungstemperatur) sowie dem tatsächlichen Messwert, unter einem Grenzwert für den Verdampfungsdruck.

Es können Verzögerungen festgelegt werden, um kurz aufeinanderfolgende Abtauzyklen auf demselben Kreislauf oder zwischen zwei unterschiedlichen Kreisläufen zu vermeiden.

Es wird nur dann ein Abtauzyklus eingeleitet, wenn alle der folgenden Bedingungen gleichzeitig gegeben sind:

- Verdampfungsdruck unter Regelgrenzwert
- Verzögerung zwischen zwei Abtauzyklen abgelaufen
- Messwert liegt unter Sollwert für die spezifische Betriebsbedingung

Ein zweiter, niedrigerer Sollwert erzwingt einen Abtauzyklus nach einer kurzen Verzögerung.

Der Abtauzyklus endet, wenn der endgültige Abtaudruck erreicht wird, bevor die maximale Zeitdauer abläuft.

Par.	Beschreibung	Min.	Max	U.M.
DF2	Temperatur/Druck für Abtaubeginn	0,0	50,0	bar
DF3	Temperatur/Druck für Abtaustopp	0,0	50,0	bar
DF4	Mindestabtaudauer	0	250	Sek
DF5	Maximale Abtaudauer	1	250	min
DF6	Abtauverzögerung zwischen zwei Kreisläufen	0	250	min
DF7	Leerlaufdauer bei ABGESCHALTETEM Verdichter vor dem Abtauen	0	250	Sek
DF8	Leerlaufdauer bei ABGESCHALTETEM Verdichter nach dem Abtauen	0	250	Sek
DF9	Abtauintervall im selben Kreislauf	1	99	min
DF30	Temperatur/Druck für erzwungenes Abtauen	0,0	50,0	bar
DF31	Differenzial für erzwungenes Abtauen	0,1	14,0	bar

Generische Abtauparameter

Parameter für Digital Defrost

Par.	Beschreibung	Min.	Max	U.M.
DF35	Unterer Sollwert für Außenlufttemperatur	-50,0	0,0	°C
DF36	Mittlerer Sollwert für Außenlufttemperatur	-7,0	7,0	°C
DF37	Oberer Sollwert für Außenlufttemperatur	0,0	110,0	°C
DF38	Sollwert für Abtau-Delta-T bei Außenlufttemperatur über DF37	-50,0	110,0	°C
DF39	Sollwert für Abtau-Delta-T bei Außenlufttemperatur zwischen DF37 und DF36	-50,0	110,0	°C
DF40	Sollwert für Abtau-Delta-T bei Außenlufttemperatur zwischen DF36 und DF35	-50,0	110,0	°C
DF41	Sollwert für Abtau-Delta-T bei Außenlufttemperatur unter DF35	-50,0	110,0	°C
13. Energiesparen und Auto Ein/Aus

Die Funktion **Energy Saving** (Energiesparen) dient zum **Zurücksetzen** der Wassersollwerte unter bestimmten Betriebsbedingungen.

Diese Funktion kann auf zwei Arten aktiviert werden:

- 1. Über bestimmte Zeitrahmen
- 2. Über digitale Eingänge (auch Doppelsollwert genannt)

Um diese Funktion im Modus 1 zu nutzen, müssen die Zeitrahmen im Untermenü "**Time Bands**" (siehe Kapitel **3.4.2**) sowie der Wert in der Parametergruppe **ES** festgelegt werden, der den Sollwerten und dem Wert des Geräteregelbands **hinzugefügt** werden soll, wenn diese Funktion aktiv ist.

Diese Parameter müssen auch für Modus 2 definiert werden.

Par.	Beschreibung	Min.	Max	U.M.
ES14	Erhöhen des Kaltwassersollwerts im Energiesparmodus	-50,0	110,0	°C
ES15	Regelband für Kaltwasser im Energiesparmodus	0,1	25,0	°C
ES16	Erhöhen des Warmwassersollwerts im Energiesparmodus	-50,0	110,0	°C
ES17	Regelband für Warmwasser im Energiesparmodus	0,1	25,0	°C

Der zweite Modus hat gegenüber Modus 1 Priorität.

Um Auto On/Off (Auto Ein/Aus) zu aktivieren, müssen nur die Zeitrahmen im Untermenü "Time Bands" (Zeitbänder) festgelegt werden (siehe Kapitel 3.4.2).

14. Dynamischer Sollwert

Mit der Funktion **Dynamic Set Point** (Dynamischer Sollwert) werden alle Wassersollwerte anhand einer proportionalen Kurve **zurückgesetzt**, um unter bestimmten Bedingungen Energie zu sparen.

Diese Funktion kann auf zwei Arten verwendet werden:

- 1. Über die Außentemperatur
- 2. Über ein externes Signal mit 4-20 mA (auch externer Sollwert genannt)

Um diese Funktion im Modus 1 zu nutzen, muss in der Parametergruppe **SD** der Wert angegeben werden, der den Sollwerten **hinzugefügt** werden soll, sowie der Temperaturbereich, in dem diese Funktion aktiv ist.

Um diese Funktion im Modus 2 zu nutzen, muss das externe Signal **mit 4–20 mA konfiguriert** und in der Parametergruppe **SD** der Wert eingegeben werden, der den Sollwerten proportional zum Wert des externen Signals **hinzugefügt** werden soll.

Par.	Beschreibung	Min.	Max	U.M.
SD1	Maximale Erhöhung des Kaltwassersollwerts im D.S.PModus	-50,0	110,0	°C
SD2	Maximale Erhöhung des Warmwassersollwerts im D.S.PModus	-50,0	110,0	°C
SD3	Sollwert für Außenlufttemperatur zum Aktivieren von D.S.P. bei Kaltwasserproduktion	-50,0	110,0	°C
SD4	Sollwert für Außenlufttemperatur zum Aktivieren von D.S.P. bei Warmwasserproduktion	-50,0	110,0	°C
SD5	Außenlufttemperatur-Differenzial für D.S.P. -Einstellung bei Kaltwasserproduktion	-25,0	25,0	°C
SD6	Außenlufttemperatur-Differenzial für D.S.P. -Einstellung bei Warmwasserproduktion	-25,0	25,0	°C

Der zweite Modus hat gegenüber Modus 1 Priorität.

Modus 1 ist nur bei luftgekühlten Geräten verfügbar.

15. Protokolldateimanagement

Der Regler zeichnet ungefähr die letzten 4 Betriebstage auf einen nichtflüchtigen Speicher auf.

Verbinden Sie einen USB-Stick mit dem Regler und rufen Sie über das Bedienfeld das Untermenü Log file management (Protokolldateimanagement) auf. Dort können sie alle Protokolle auf ein USB-Speichermedium kopieren (siehe Kapitel 3.4.13 und 4.4.13).

Der Regler erstellt einen Ordner mit der Bezeichnung "ipro". Dieser enthält drei Alarmdateien:

- "*alarm_a*" enthält alle Alarme, die das Gerät anhalten.
- "*alarm_b*" enthält alle Alarme, die den spezifischen Kältemittelkreislauf anhalten.
- "alarm_c" enthält alle Alarme, die den spezifischen Verdichter anhalten.

Alle Dateien sind im ".txt"-Format und das Aufzeichnungsdatum ist im Format JJ/MM/TT/hh/mm/ss.

• "accesslog" zeichnet alle Parameteränderungen einschließlich der alten und neuen Werten auf.

🛎 🔚 つ C :	🗸 🛛 accesslog.txt - WordPad	x
Home	View	0
Paste Clipboard	Courier New ▼ 11 ▲ ▲ ▲ IF I	
•••2•••1•••	· 🚡 · · · 1 · · · 2 · · · · 3 · · · 4 · · · 5 · · · 6 · · · 7 · · · 8 · · · 9 · · · 10 · · · 11 · · · 12 · · · 13 · · · 14 · · · 15½ · · 16 · · · 17 · · ·	18 ·
	17/09/21 11:15 LOGIN,admin,OK 17/10/04 15:22 PARAM_PA[1],2,1 17/10/04 15:24 PARAM_PA[1],1,2 17/10/04 15:24 PARAM_PA[1],1,2 17/10/04 15:24 PARAM_CO[2],12,0 17/10/04 15:24 PARAM_CO[3],36,0 17/10/04 15:24 PARAM_CO[3],20,1 17/10/04 15:24 PARAM_CO[3],20,1 17/10/05 09:40 PARAM_SD[1],0,50 17/10/05 09:40 PARAM_SD[2],0,40 17/10/05 09:40 PARAM_SD[3],0,200 17/10/05 09:40 PARAM_SD[3],0,200 17/10/05 09:40 PARAM_SD[5],0,20 17/10/05 09:40 PARAM_SD[5],0,20 17/10/05 09:44 PARAM_SD[6],0,50 17/10/05 09:44 PARAM_SD[6],50,-50	E

Diese Datei ist im ".txt"-Format und das Aufzeichnungsdatum ist im Format JJ/MM/TT hh:mm.

• "*Unit10Din*" zeichnet die letzten 4 Betriebstage einschließlich Status und Wert der Hauptvariablen auf.

Diese Datei ist im ".txt"-Format und das Aufzeichnungsdatum ist im Format JJ/MM/TT/hh/mm/ss.

Warnung: Bevor Sie die Dateien an den **USB**-Stick senden, stellen Sie sicher, dass sich dort kein Ordner mit dem Namen "**ipro**" befindet.

16. Fernbedienung

Das Gerät kann auf verschiedene Arten ferngesteuert werden:

- Angegebene freie Kontakte in der Kunden-Anschlussleiste (X);
- Bus-Protokoll;
- Externe Tastatur

16.1. Fernbedienung über freie Kontakte

In der Kunden-Anschlussleiste (X) im Schaltschrank befinden sich trockene Kontakte mit folgenden Anschlussmöglichkeiten:

- Zum Gerät
 - Ein/Aus per Fernsteuerung (allgemein)
 - o Auswahl Sommer-/Wintermodus per Fernsteuerung
 - o Strömungswächterstatus
 - Wasserpumpen-Alarmstatus (externe Hydraulikbaugruppen)
 - o Digitaleingang für doppelten Sollwert
 - Analogeingang für externen Sollwert
- Vom Gerät
 - o Generischer Alarmstatus
 - o Startbefehle für Wasserpumpen
 - o Gerätestatus

Im Schaltdiagramm des Geräts befindet sich eine Kontaktliste mit den Nummern der Klemmleisten.

16.2. Fernsteuerung über Bus-Protokoll

Wasserkühlmaschinen und Wärmepumpen können per Modbus[®] RTU, LonTalk[®] sowie BACnet[®] MSTP oder IP in ein Gebäudeautomatisierungssystem eingebunden werden.

Alle nötigen Informationen zur Geräteintegration finden Sie in der "Integrationsanleitung" ab diesem Handbuchcode MU–COMM–E–EL–REV2.0.1–1017–UK.

16.3. Steuerung über externe Tastatur

Gemäß folgendem Anschlussplan kann parallel zur Tastatur des Geräts eine zweite verbunden werden.

Eine falsche Verdrahtung kann zu einer schwerwiegenden Beschädigung der Tastaturen oder des Reglers führen.

Ist die zweite Tastatur angeschlossen, muss die ursprüngliche Tastatur aktualisiert werden (siehe Kapitel **3.4.13**).

Trane – von Trane Technologies (NYSE: TT), ein globaler Klima-Innovator – schafft komfortable, energieeffiziente Innenumgebungen für gewerbliche und private Anwendungen. Nähere Informationen unter trane.eu oder tranetechnologies.com. Im Interesse einer kontinuierlichen Produktverbesserung behält Tranesich das Recht vor, Konstruktionen und Spezifikationen ohne vorherige Ankündigung zu ändern.